Propuesta de un dispositivo refrigerante con celdas Peltier alimentado con un sistema fotovoltaico independiente: un caso de estudio
Main Article Content
Keywords
Celdas Peltier, efecto termoeléctrico, sistema fotovoltaico, temperatura
Resumen
Actualmente, múltiples estudios intentan establecer alternativas que permitan disminuir las consecuencias del gasto energético y los gases de efecto invernadero. En este sentido, la energía solar fotovoltaica se ha convertido en una opción factible para aplacar esta problemática, asimismo, se han buscado nuevas tecnologías para disminuir el gasto energético de los dispositivos refrigerantes, porque consumen emasiada energía y utilizan refrigerantes dañinos para cumplir su tarea. Por esta razón, las celdas Peltier pueden ser una opción viable para disminuir la temperatura en espacios cerrados sin generar residuos o emisiones nocivas. En el presente trabajo se plantea combinar estas iniciativas en un sistema unificado para aprovechar ambas tecnologías, implementando un sistema refrigerante que utiliza el efecto termoeléctrico para reducir la temperatura en su interior, que es alimentado por un sistema fotovoltaico autónomo utilizando algoritmos de seguimiento del punto de máxima potencia para mejorar su rendimiento. Los resultados reflejan que el dispositivo es capaz de disminuir la temperatura en su interior, permitiendo la conservación de elementos a temperaturas bajas y constantes, sin los inconvenientes de los refrigeradores comunes. Finalmente, se concluye que este sistema es una posibilidad plausible para sustituir las tecnologías de enfriamiento donde el acceso a la energía eléctrica es limitado.
Descargas
Referencias
[2] J. Li, D. W. Hilbert, T. Parker, and S. Williams, “How do species respond to climate change along an elevation gradient? A case study of the grey-headed robin ( Heteromyias albispecularis ),” Global Change Biology, vol. 15, no. 1, pp. 255–267, Jan. 2009. http://doi.wiley.com/10.1111/j.1365-2486.2008.01737.x 153
[3] W. D. Nordhaus and J. G. Boyer, “Requiem for Kyoto: an economic analysis of the Kyoto Protocol,” The Energy Journal, vol. 20, no. Special Issue-The Cost of the Kyoto Protocol: A Multi-Model Evaluation, pp. 93–130, 1999. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol20-NoSI-5 153, 159
[4] R. McKenzie, G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes,A. Bais, O. Morgenstern, P. Newman, L. Oman, C. Brogniez, and S. Simic, “Success of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements with “World Avoided” Calculations from Two Chemistry-Climate Models,” Scientific Reports, vol. 9, no. 1, p. 12332,Sep. 2019. https://doi.org/10.1038/s41598-019-48625-z153
[5] N. Maamoun, “The Kyoto protocol: Empirical evidence of a hidden success,” Journal of Environmental Economics and Management, vol. 95, pp. 227–256, May 2019. https://doi.org/10.1016/j.jeem.2019.04.001153
[6] L. H. Balza, R. Espinasa, and T. Serebrisky, “Lights On?: Energy Needs in Latin America and the Caribbean to 2040,” Banco Interamericano de Desarrollo, 2016. https://publications.iadb.org/en/lights-energy-needs-latin-america-and-caribbean-2040
[7] C. Washburn and M. Pablo-Romero, “Measures to promote renewable energies for electricity generation in Latin American countries,” Energy Policy, vol. 128, pp. 212–222, May 2019. https://doi.org/10.1016/j.enpol.2018.12.059
[8] E. Rosenfeld, G. A. San Juan, C. A. Discoli, I. Martini, C. Ferreyro, D. A.Barbero, B. Brea, M. Melchiori, G. M. Viegas, L. Dicroce, and others, “Ahorro de energía en el sector residencial,” Avances en Energías Renovables y Medio Ambiente, vol. 11, pp. 31–38, 2007.
[9] Y. Sariego Toledo, S. Pérez Ybáñez, E. García Noa, and L. Rodríguez, “Evaluación energética de una planta de helados,” Ingeniería Energética,vol. 38, no. 1, pp. 42–53, 2017.
[10] P. A. Martínez Cancino, “Análisis del Recambio de Refrigeradores Energéticamente Eficientes como Medida de Eficiencia Energética y Propuestas de Implementación,” PhD Thesis, Universidad de Chile, Santiago, Chile, 2010. http://repositorio.uchile.cl/handle/2250/103987
[11] F. Zink, J. S. Vipperman, and L. A. Schaefer, “Environmental motivation to switch to thermoacoustic refrigeration,” Applied Thermal Engineering, vol. 30, no. 2-3, pp. 119–126, Feb. 2010. https://doi.org/10.1016/j.applthermaleng.2009.07.008Get
[12] J. Mardini-Bovea, G. Torres-Díaz, M. Sabau, E. De-la Hoz-Franco,J. Niño-Moreno, and P. J. Pacheco-Torres, “A review to refrigeration with thermoelectric energy based on the Peltier effect,” DYNA, vol. 86, no.208, pp. 9–18, 2019. http://dx.doi.org/10.15446/dyna.v86n208.72589
[13] J. Flipse, F. Bakker, A. Slachter, F. Dejene, and B. Van Wees, “Direct observation of the spin-dependent Peltier effect,” Nature nanotechnology, vol. 7, no. 3, p. 166, 2012. https://doi.org/10.1038/nnano.2012.2
[14] G. Casano and S. Piva, “Experimental investigation of a Peltier cells cooling system for a Switch-Mode Power Supply,” Microelectronics Reliability, vol. 79, pp. 426–432, Dec. 2017. https://doi.org/10.1016/j.microrel.2017.05.042
[15] G. Walker and others, “Evaluating MPPT converter topologies using a MATLAB PV model,” in Journal of Electrical & Electronics Engineering, vol. 21, Australia, 2001, pp. 45–55.
[16] M. A. Elgendy, B. Zahawi, and D. J. Atkinson, “Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications,” IEEE Trans. Sustain. Energy, vol. 3, no. 1, pp. 21–33, Jan.2012. http://ieeexplore.ieee.org/document/6102293/
[17] A. Kane, V. Verma, and B. Singh, “Optimization of thermoelectric coolingtechnology for an active cooling of photovoltaic panel,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 1295–1305, Aug. 2017. [Online].Available: https://doi.org/10.1016/j.rser.2016.11.114
[18] Jin Du, Fan Yang, and Jiande Wu, “Design and analysis of semiconductor refrigeration system powered by PV Cells,” in 2012 IEEE International Symposium on Industrial Electronics. Hangzhou, China: IEEE, May 2012, pp. 286–291. https://doi.org/10.1109/ISIE.2012.6237099
[19] L.-x. Ni, K. Sun, L. Zhang, Y. Xing, M. Chen, and L. Rosendahl, “A power conditioning system for thermoelectric generator based on interleaved Boost converter with MPPT control,” in 2011 International Conference on Electrical Machines and Systems. Beijing, China: IEEE, Aug. 2011, pp.1–6. https://doi.org/10.1109/ICEMS.2011.6073395
[20] A. Montecucco, J. Siviter, and A. R. Knox, “The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel,” Applied Energy, vol. 123, pp. 47–54, Jun. 2014. https://doi.org/10.1016/j.apenergy.2014.02.030
[21] H. Najafi and K. A. Woodbury, “Optimization of a cooling system based on Peltier effect for photovoltaic cells,” Solar Energy, vol. 91, pp. 152–160, May2013. https://doi.org/10.1016/j.solener.2013.01.026
[22] O. Francis, C. J. Lekwuwa, and I. H. John, “Performance evaluation of a thermoelectric refrigerator,” International Journal of Engineering and Innovative Technology (IJEIT), vol. 2, no. 7, 2013.
[23] D. Astrain, J. G. Vián, and J. Albizua, “Computational model for refrigerators based on Peltier effect application,” Applied Thermal Engineering, vol. 25, no. 17, pp. 3149 – 3162, 2005. https://doi.org/10.1016/j.applthermaleng.2005.04.003
[24] A. C. Zúñiga, G. S. Tejada, L. F. G. Gómez, and S. n. Cañas, “Algunas variables para evaluación de tecnologías aislantes óptimas en la implementación en cajas refrigerantes portátiles. Corporación Universitaria Lasallista,” Producción+ Limpia, vol. 12, no. 2, pp. 9–23, 2017.
[Online].Available: https://doi.org/10.22507/pml.v12n2a1
[25] J. van Amerongen, “Mechatronic design,” Mechatronics, vol. 13, no. 10,pp. 1045–1066, Dec. 2003. https://doi.org/10.1016/S0957-4158(03)00042-4
[26] T. Halder, “Charge controller of solar photo-voltaic panel fed (SPV)battery,” in India International Conference on Power Electronics 2010(IICPE2010). New Delhi, India: IEEE, Jan. 2011, pp. 1–4. [Online].Available: https://doi.org/10.1109/IICPE.2011.5728056
[27] A. B. Cantillo, J. R. Charris, J. S. Rodríguez, J. D. González, E. Y. Rodríguez, and J. R. Mckinley, “Modelado dinámico del manipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks,” Revista UIS Ingenierías, vol. 15, no. 2, pp. 49–62, 2016. https://doi.org/10.18273/revuin.v15n2-2016004
[28] D. Wolber, H. Abelson, and M. Friedman, “Democratizing Computing with App Inventor,” Get Mobile: Mobile Comp. and Comm., vol. 18, no. 4, pp. 53–58, Jan. 2015. https://doi.org/10.1145/2721914.2721935
[29] C. Peng, Y. Huang, and Z. Wu, “Building-integrated photovoltaics(BIPV) in architectural design in China,” Energy and Buildings, vol. 43, no. 12, pp. 3592–3598, Dec. 2011. https://doi.org/10.1016/j.enbuild.2011.09.032
[30] A. Harish and M. Prasad, “Microcontroller based photovoltaic mppt charge controller,” International Journal of Engineering Trends and Technology, vol. 4, no. 4, pp. 1018–1021, 2013.
[31] M. González Valencia and A. Alzate Gómez, “Diseño estático de unconvertidor DC/DC reductor-elevador bidireccional,” Tecnura, vol. 14,no. 26, pp. 7–14, Jan. 2010. https://doi.org/10.14483/22487638.6682
[32] L. Schmitz, D. C. Martins, and R. F. Coelho, “Generalized High Step-UpDC-DC Boost-Based Converter With Gain Cell,” IEEE Trans. Circuits Syst. I, vol. 64, no. 2, pp. 480–493, Feb. 2017. https://doi.org/10.1109/TCSI.2016.2603782
[33] J. Falin, “Designing DC/DC converters based on SEPIC topology,” Analog Applications Journal, pp. 18–23, 2008.
[34] M. Da Silva, J. Fraytag, N. Chagas, M. Schlittler, M. Dalla Costa,R. A. Pinto, A. Seidel, and R. do Prado, “Single-stage high-power-factor dimmable lighting system for electrodeless fluorescent lamp,” in 2011IEEE International Symposium on Industrial Electronics. IEEE, 2011, pp.390–395. http://dx.doi.org/10.1109/ISIE.2011.5984190158
[35] R. A. Reiter, R. D. de Oliveira Reiter, and A. Péres, “Controlador de cargade acordo com a portaria 396 do INMETRO,” in Seminário de Eletrônica de Potência e Controle (SEPOC 2014), vol. 1, Santa Maria - Brazil, 2014. http://dx.doi.org/10.13140/RG.2.1.3871.0882 158
[36] S. Martha, B. Hariprakash, S. Gaffoor, S. Ambalavanan, and A. Shukla,“Assembly and performance of hybrid-VRLA cells and batteries,” Journal of Power Sources, vol. 144, no. 2, pp. 560–567, Jun. 2005. https://doi.org/10.1016/j.jpowsour.2004.11.016
[37] S. Salamanca-Avila, “Propuesta de diseño de un sistema de energía solar fotovoltaica. Caso de aplicación en la ciudad de Bogotá,” Revista Científica, vol. 3, no. 30, pp. 263–277, Sep. 2017. https://doi.org/10.14483/23448350.12213
[38] C. Lundgaard and O. Sigmund, “Design of segmented thermoelectric Peltiercoolers by topology optimization,” Applied Energy, vol. 239, pp. 1003–1013,Apr. 2019. https://doi.org/10.1016/j.apenergy.2019.01.247
[39] P. S. Iskrenovic, G. B. Sretenovic, I. B. Krstic, B. M. Obradovic, andM. M. Kuraica, “Thermostat with Peltier element and microcontroller as adriver,” Measurement, vol. 137, pp. 470–476, Apr. 2019. https://linkinghub.elsevier.com/retrieve/pii/S0263224119301034
[40] L. Ruiz, J. Beristáin, I. Sosa, and J. Hernández, “Estudio del algoritmo de seguimiento de punto de máxima potencia perturbar y observar,” Revista de ingeniería eléctrica, electrónica y computación, vol. 8, no. 1, pp. 17–23, 2010.
[41] C. Abdelkhalek, E. B. Said, and A. Younes, “An Improved MPPTTactic for PV system under Temperature variation,” in 2019 8thInternational Conference on Systems and Control (ICSC). Marrakesh, Morocco: IEEE, Oct. 2019, pp. 382–387. https://doi.org/10.1109/ICSC47195.2019.8950508
[42] A. Reza Reisi, M. Hassan Moradi, and S. Jamasb, “Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review,” Renewable and Sustainable Energy Reviews, vol. 19, pp. 433–443, Mar. 2013. https://doi.org/10.1016/j.rser.2012.11.052
[43] K. Ogata, Ingeniería de control moderna. Pearson Educación, 2003.
[44] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimizing sampling rate of P&O MPPT technique,” in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).Aachen, Germany: IEEE, 2004, pp. 1945–1949. https://doi.org/10.1109/PESC.2004.1355415
[45] K. Åström and T. Hägglund, “Revisiting the Ziegler–Nichols step response method for PID control,” Journal of Process Control, vol. 14, no. 6, pp.635–650, Sep. 2004. https://doi.org/10.1016/j.jprocont.2004.01.002
[46] M. L. Ruz, S. Fragoso, F. Vázquez, J. Garrido, D. Rodríguez, and F. Morilla, “Planta experimental para supervisión y control del ciclo de refrigeración por compresión de vapor,” in Madrid: CEA-IFAC, Madrid, Spain, 2016, pp.308–315.
[47] K. A. Kim, G.-S. Seo, B.-H. Cho, and P. T. Krein, “Photovoltaic Hot-Spot Detection for Solar Panel Substrings Using AC Parameter Characterization,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1121–1130, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2417548
[48] J. Fernández Ferichola, “Caracterización de módulos fotovoltaicos con dispositivo portátil,” B.S. thesis, Universidad Carlos III de Madrid, España,2009.
[49] M. B. A. Shuvho, M. A. Chowdhury, S. Ahmed, and M. A. Kashem,“Prediction of solar irradiation and performance evaluation of grid connected solar 80KWp PV plant in Bangladesh,” Energy Reports, vol. 5, pp. 714–722,Nov. 2019. https://doi.org/10.1016/j.egyr.2019.06.011168
[50] T. T. N. Khatib, A. Mohamed, N. Amim, and K. Sopian, “An Improved Indirect Maximum Power Point Tracking Method for Standalone Photovoltaic Systems,” in Proceedings of the 9th WSEAS International Conference on Applications of Electrical Engineering, ser. AEE’10. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS), 2010, pp. 56–62.
[51] B. W. Williams, A. A. Helal, M. A. Elsaharty, A. K. Abdelsalam, andN. E. Zakzouk, “Improved performance low-cost incremental conductance PV MPPT technique,” IET Renewable Power Generation, vol. 10, no. 4, pp. 561–574, Apr. 2016. https://doi.org/10.1049/iet-rpg.2015.0203
[52] P. Wu and W. Little, “Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators,” Cryogenics, vol. 24, no. 8, pp. 415–420, Aug. 1984. https://doi.org/10.1016/0011-2275(84)90015-8
[53] G. A. Mannella, V. La Carrubba, and V. Brucato, “Peltier cells as temperature control elements: Experimental characterization and modeling,” Applied Thermal Engineering, vol. 63, no. 1, pp. 234–245, Feb. 2014. https://doi.org/10.1016/j.applthermaleng.2013.10.069