Álgebra óptima y soluciones invariantes para la ecuación de Chazy

Main Article Content

G Loaiza https://orcid.org/0000-0003-2413-1139
Yeisson Acevedo-Agudelo https://orcid.org/0000-0002-1640-9084
Oscar Londoño-Duque https://orcid.org/0000-0002-5666-8224

Keywords

Ecuación de Chazy, grupo de simetrías de Lie, álgebra óptima, sistema óptimo, soluciones invariantes

Resumen

Se caracterizan las soluciones invariantes para la ecuación de Chazy a partir de los operadores generadores del álgebra óptima, la cual fue obtenida mediante el grupo de simetrías de Lie correspondiente a dicha ecuación.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 616 | PDF Downloads 576

Referencias

[1] S. Lie, “Theorie der transformationsgruppen,” Mathematische Annalen, vol. 2, 1970.

[2] E. Noether, “Invariante variationsprobleme. nachrichten der königlichen gessellschaft der wissenschaften. mathematisch-physikalishe klasse 2, 235–257,” Transport Theory and Statistical Physics, pp. 183–207, 1918.

[3] N. H. Ibragimov, CRC handbook of Lie group analysis of differential equations. CRC press, 1995, vol. 3.

[4] A. Paliathanasis and P. Leach, “Symmetries and singularities of the szekeres system,” Physics Letters A, vol. 381, no. 15, p. 1277–1280, Apr 2017.

[5] A. Ghose-Choudhury, P. Guha, A. Paliathanasis, and P. G. L. Leach, “Noetherian symmetries of noncentral forces with drag term,” International Journal of Geometric Methods in Modern Physics, vol. 14, no. 02, p. 1750018, Jan 2017.

[6] W. Hu, Z. Wang, Y. Zhao, and Z. Deng, “Symmetry breaking of infinitedimensional dynamic system,” Applied Mathematics Letters, vol. 103, p. 106207, 2020.

[7] E. Alimirzaluo, M. Nadjafikhah, and J. Manafian, “Some new exact solutions of $(3+1)$-dimensional burgers system via lie symmetry analysis,” 2021.

[8] A. Paliathanasis, “Lie symmetry analysis and one-dimensional optimal system for the generalized 2+1 kadomtsev-petviashvili equation,” Physica Scripta, vol. 95, no. 5, p. 055223, 2020.

[9] H. Lu and Y. Zhang, “Lie symmetry analysis, exact solutions, conservation laws and bäcklund transformations of the gibbons-tsarev equation,” Symmetry, vol. 12, no. 8, p. 1378, 2020.

[10] S.-F. Tian, “Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized boussinesq water wave equation,” Applied Mathematics Letters, vol. 100, p. 106056, 2020.

[11] M. R. Ali and R. Sadat, “Lie symmetry analysis, new group invariant for the (3+1)-dimensional and variable coefficients for liquids with gas bubbles models,” Chinese Journal of Physics, 2021.

[12] L. Rosenhead, Laminar Boundary Layers. Clarendon Press, (1963).

[13] P. J. Olver, “Applications of Lie groups to differential equations,” Gradua-te texts in Mathematics, vol. 107 (1993), 1993.

[14] H. Schlichting, “Laminare strahlausbreitung,” Z. Angew. Math. Mech., vol. 13, pp. 260–263, 1933. https://doi.org/10.1002/zamm.19330130403

[15] W. G. Bickley, “The plane jet,” Phil. Mag., vol. 23, pp. 727–721, 1937.

[16] H. B. Squire, 50 fahre Grenzschichtforschung, vol. (1955).

[17] M. B. Glauert, “The wall jet,” J. Fluid Mech., vol. 1, p. 625–643, 1956.

[18] N. Riley, “Asymptotic expansions in radial jets,” J.Math. and Phys., vol. 41, pp. 132–146, 1962. https://doi.org/10.1002/sapm1962411132

[19] L. J. Crane, “Flow past a stretching plate,” Z. Angew. Math. Mech., vol. 21, p. 645–647, 1970. https://doi.org/10.1007/BF01587695

[20] N. H. Ibragimov and M. C. Nucci, “Integration of third order ordinary differential equations by Lie’s method: Equations admitting three-dimensional Lie algebras,” Lie Groups and their applications, vol. 1, pp. 49–64, 1994.

[21] F. M. Mahomed, “Symmetry group classification of ordinary differential equations: Survey of some results,” Mathematical Methods in the Applied Sciences, vol. 30, p. 1995–2012, 2007. https://doi.org/10.1002/mma.934

[22] J. Chazy, “Sur les equations differentielles dont l’integrale generale est uniforme et admet des singelarities essentielles mobiles,” C. R. Acad. Sc. Paris, vol. 149, p. 563–565, 1909.

[23] ——, “Sur les equations differentielles dont l’integrale generale possede une coupure essentielle mobile,” C. R. Acad. Sc. Paris, vol. 150, p. 456–458, 1910.

[24] ——, “Sur les equations differentielles du troisieme ordre et d’ordre superieur dont l’integrale generale a ses points critiques fixes,” Acta Math., vol. 34, p. 317–385, 1911.

[25] P. A. Clarkson and P. J. Olver, “Symmetry and the Chazy equation,” J. Diff. Eq., vol. 124, p. 225–246, 1996. https://www-users.math.umn.edu/ ~olver/s_/chazy.pdf

Artículos más leídos del mismo autor/a