Análisis de susceptibilidad a deslizamientos con el modelo físico Scoops3D en un terreno montañoso tropical
Main Article Content
Keywords
Deslizamientos profundos, Scoops3D, falla rotacional, método de Bishop 3D, estabilidad de taludes
Resumen
Muchos modelos distribuidos basados en la física estudian la ocurrencia de deslizamientos mediante un análisis de estabilidad de talud infinito, simulando una falla de tipo planar, que no suelen ser aplicables a fallas rotacionales y deslizamientos profundos. Recientemente, se han desarrollado algunos modelos distribuidos tridimensionales que se han aplicado en diferentes sitios del mundo. En esta investigación se implementa el modelo Scoops3D para un análisis de susceptibilidad a ocurrencia de deslizamientos en un terreno montañosos tropical de los Andes colombianos (Medellín, Colombia). Además de identificar las áreas susceptibles a ocurrencia de deslizamientos rotacionales, se analizan los resultados del factor de seguridad con las áreas de las superficies de falla críticas asociadas para proveer una interpretación y explicación de los resultados de simulación. Esto para tener una mejor comprensión del funcionamiento del modelo y facilitar su implementación en estudios de amenaza de movimientos en masa. El actual estudio propone el modelo Scoops3D como una herramienta de gran utilidad para proyectos de gestión del riesgo de movimientos en masa.
Descargas
Referencias
[2] J. Corominas, C. van Westen, P. Frattini, L. Cascini, J.-P. Malet, S. Fotopoulou, F. Catani, M. Van Den Eeckhaut, O. Mavrouli, F. Agliardi et al., “Recommendations for the quantitative analysis of landslide risk,” Bulletin of engineering geology and the environment, vol. 73, no. 2, pp. 209–263, 2014. https://doi.org/10.1007/s10064-013-0538-8
[3] T. W. van Asch, J.-P. Malet, L. P. van Beek, and D. Amitrano, “Techniques, issues and advances in numerical modelling of landslide hazard,” Bulletin de la Société géologique de France, vol. 178, no. 2, pp. 65–88, 2007. https://doi.org/10.2113/gssgfbull.178.2.65
[4] M. Mergili, I. Marchesini, M. Rossi, F. Guzzetti, and W. Fellin, “Spatially distributed three-dimensional slope stability modelling in a raster GIS,” Geomorphology, vol. 206, pp. 178–195, 2014. https: //doi.org/10.1016/j.geomorph.2013.10.008
[5] E. Aristizábal, J. I. Vélez, H. E. Martínez, and M. Jaboyedoff, “Shia_landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins,” Landslides, vol. 13, no. 3, pp. 497–517, 2016. https://doi.org/10.1007/s10346-015-0580-7
[6] R. L. Baum, W. Z. Savage, and J. W. Godt, TRIGRS: a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. US Geological Survey Denver, CO, USA, 2008.
[7] D. R. Montgomery and W. E. Dietrich, “A physically based model for the topographic control on shallow landsliding,” Water resources research, vol. 30, no. 4, pp. 1153–1171, 1994. https://doi.org/10.1029/93WR02979
[8] R. T. Pack, D. G. Tarboton, and C. N. Goodwin, “The SINMAP approach to terrain stability mapping,” pp. 1–8, 1998. https://digitalcommons.usu. edu/cgi/viewcontent.cgi?article=3586&context=cee_facpub
[9] M. Mergili, I. Marchesini, M. Alvioli, M. Metz, B. Schneider-Muntau, M. Rossi, and F. Guzzetti, “A strategy for gis-based 3-d slope stability modelling over large areas,” Geoscientific Model Development, vol. 7, no. 6, pp. 2969–2982, 2014. https://doi.org/10.5194/gmd-7-2969-2014
[10] Z. Chen, H. Mi, F. Zhang, and X. Wang, “A simplified method for 3d slope stability analysis,” Canadian geotechnical journal, vol. 40, no. 3, pp. 675–683, 2003. https://doi.org/10.1139/t03-002
[11] T. V. Tran, M. Alvioli, G. Lee, and H. U. An, “Three-dimensional, time-dependent modeling of rainfall-induced landslides over a digital landscape: a case study,” Landslides, vol. 15, no. 6, pp. 1071–1084, 2018. https://doi.org/10.1007/s10346-017-0931-7
[12] A. Chakraborty and D. Goswami, “State of the art: Three dimensional (3d) slope-stability analysis,” International Journal of Geotechnical Engineering, vol. 10, no. 5, pp. 493–498, 2016. https://doi.org/10.1080/19386362.2016. 1172807
[13] ——, “Three-dimensional (3D) slope stability analysis using stability charts,” International Journal of Geotechnical Engineering, pp. 1–8, 2018. https://doi.org/10.1080/19386362.2018.1465743
[14] M. Xie, Z. Wang, X. Liu, and B. Xu, “Three-dimensional critical slip surface locating and slope stability assessment for lava lobe of unzen volcano,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 3, no. 1, pp. 82–89, 2011. https://doi.org/10.3724/SP.J.1235.2011.00082
[15] R. Kalatehjari and N. Ali, “A review of three-dimensional slope stability analyses based on limit equilibrium method,” Electronic Journal of Geotechnical Engineering, vol. 18, pp. 119–134, 2013. http://www.ejge.com/ 2013/Ppr2013.011alr.pdf
[16] Y. W. Tun, M. A. Llano-Serna, D. M. Pedroso, and A. Scheuermann, “Multimodal reliability analysis of 3D slopes with a genetic algorithm,” Acta Geotechnica, vol. 14, no. 1, pp. 207–223, 2019. https://doi.org/10.1007/ s11440-018-0642-9
[17] L. Weidner, K. DePrekel, T. Oommen, and S. Vitton, “Investigating large landslides along a river valley using combined physical, statistical, and hydrologic modeling,” Engineering Geology, vol. 259, p. 105169, 2019. https://doi.org/10.1016/j.enggeo.2019.105169
[18] S. Zhang and F. Wang, “Three-dimensional seismic slope stability assessment with the application of Scoops3D and GIS: a case study in atsuma, hokkaido,” Geoenvironmental Disasters, vol. 6, no. 1, pp. 1–14, 2019. https://doi.org/10.1186/s40677-019-0125-9
[19] R. J. Marin, E. F. García, and E. Aristizábal, “Assessing the effectiveness of TRIGRS for predicting unstable areas in a tropical mountain basin (Colombian Andes),” Geotechnical and Geological Engineering, vol. 39, no. 3, pp. 2329–2346, 2021. https://doi.org/10.1007/s10706-020-01630-w
[20] J. L. Ball, J. Taron, M. E. Reid, S. Hurwitz, C. Finn, and P. Bedrosian, “Combining multiphase groundwater flow and slope stability models to assess stratovolcano flank collapse in the cascade range,” Journal of Geophysical Research: Solid Earth, vol. 123, no. 4, pp. 2787–2805, 2018. https://doi.org/10.1002/2017JB015156
[21] E. Aristizábal, M. Vásquez, and D. Ruíz, “Métodos estadísticos para la evaluación de la susceptibilidad por movimientos en masa,” TecnoLógicas, vol. 22, no. 46, pp. 43–64, 2019. https://doi.org/10.22430/22565337.1247
[22] J. Mendoza and E. Aristizábal, “Metodología para la zonificación de la susceptibilidad por movimientos en masa en proyectos lineales. estudio de caso en el acueducto del municipio de Fredonia, Antioquia.” Ingeniería y ciencia, vol. 13, no. 26, 2017. http://orcid.org/0000-0002-9232-9713
[23] E. V. Aristizábal, E. Garc’ıa, R. J. Marin, F. Gómez, and J. C. Guzmán, “Rainfall-intensity effect on landslide hazard assessment due to climate change in north-western colombian andes,” Revista Facultad de Ingenier’ıa Universidad de Antioquia, 2021. https://doi.org/10.17533/udea. redin.20201215
[24] C. A. Hidalgo and J. A. Vega, “Estimación de la amenaza por deslizamientos detonados por sismos y lluvia (Valle de Aburrá-Colombia),” Revista EIA, vol. 11, no. 22, pp. 103–117, 2014. http:/dx.doi.org/10.14508/reia.2014.11. 22.103-117
[25] R. J. Marin and M. F. Velásquez, “Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides,” Geomorphology, vol. 351, p. 106976, 2020. https://doi.org/10.1016/j.geomorph.2019.106976 73
[26] R. J. Marin, E. F. García, and E. Aristizábal, “Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides,” Engineering Geology, vol. 278, p. 105855, 2020. https://doi.org/10.1016/j.enggeo.2020.105855
[27] J. Palacio Cordoba, M. Mergili, and E. Aristizábal, “Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r. slope. stability model,” Natural Hazards and Earth System Sciences, vol. 20, no. 3, pp. 815–829, 2020. https://doi.org/10.5194/nhess-13-559-2013
[28] M. E. Reid, S. B. Christian, D. L. Brien, and S. Henderson, “Scoops3D—software to analyze three-dimensional slope stability throughout a digital landscape,” US Geological Survey Techniques and Methods, book, vol. 14, 2015. http://dx.doi.org/10.3133/tm14A1
[29] O. Hungr, “An extension of Bishop’s simplified method of slope stability analysis to three dimensions,” Geotechnique, vol. 37, no. 1, pp. 113–117, 1987. https://doi.org/10.1680/geot.1987.37.1.113
[30] . E. Municipio de Medellín, “Perfil demográfico por barrio Comuna 3 Manrique. Contrato interadministrativo no. 4600043606. medellin,” 2008.
[31] Empresa de Desarrollo Urbano (EDU) and Universidad EAFIT, Estudios báicos de amenaza, vulnerabilidad y riesgo de detalle para los circuitos Los Magos, El Corazón y Santo Domingo, en el municipio de Medellín. Universidad EAFIT: Medellín, 1991.
[32] W. R. Dearman, Engineering Geological Mapping. Elsevier, 1991.
[33] N. Jia, Y. Mitani, M. Xie, and I. Djamaluddin, “Shallow landslide hazard assessment using a three-dimensional deterministic model in a mountainous area,” Computers and Geotechnics, vol. 45, pp. 1–10, 2012. https://doi.org/10.1016/j.compgeo.2012.04.007
[34] E. Aristizábal, E. García, and C. Martínez, “Susceptibility assessment of shallow landslides triggered by rainfall in tropical basins and mountainous terrains,” Natural Hazards, vol. 78, no. 1, pp. 621–634, 2015. https://doi.org/10.1007/s11069-015-1736-4
[35] R. J. Marín, J. Marín-Londoño, and Á. J. Mattos, “Análisis y evaluación del riesgo de deslizamientos superficiales en un terreno montañoso tropical: implementación de modelos físicos simples,” Scientia et technica, vol. 25, no. 1, pp. 164–171, 2020.
[36] R. J. Marín and J. P. Osorio, “Modelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficiales,” Revista EIA, vol. 14, no. 28, pp. 13–28, 2017. https://doi.org/10.24050/reia.v14i28.975
[37] E. F. García-Aristizábal, E. Aristizábal, R. J. Marín, and J. C. Guzmán- Martínez, “Implementación del modelo trigrs con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia,” 2019. https://doi.org/10.22430/22565337.1037
[38] R. J. Marín, J. C. Guzmán-Martínez, H. E. M. Carvajal, E. F. García- Aristizábal, J. D. Cadavid-Arango, and P. Agudelo-Vallejo, “Evaluación del riesgo de deslizamientos superficiales para proyectos de infraestructura: caso de análisis en vereda El Cabuyal,” Ingeniería y Ciencia, vol. 14, no. 27, pp. 153–177, 2018. https://doi.org/10.17230/ingciencia.14.27.7
[39] R. J. Marín, E. García-Aristizábal, and E. Aristizábal, “Umbrales de lluvia para deslizamientos superficiales basados en modelos físicos: aplicación en una subcuenca del Valle de Aburrá (Colombia),” Dyna, vol. 86, no. 210, p. 312, 2019. https://doi.org/10.15446/dyna.v86n210.77166
[40] R. J. Marin, “Physically based and distributed rainfall intensity and duration thresholds for shallow landslides,” Landslides, vol. 17, no. 12, pp. 2907–2917, 2020. https://doi.org/10.1007/s10346-020-01481-9
[41] AMVA and Universidad Nacional de Colombia-UNAL, Estudios básicos de amenaza por movimientos en masa, inundaciones y avenidas torrenciales en los municipios de Caldas, La Estrella, Envigado, Itagüí, Bello, Copacabana y Barbosa, para la incorporación de la gestión del riesgo en la planificación territorial. Área Metropolitana del Valle de Aburrá; Medellín, 2018.
[42] S. Posada and D. Ávila, “Evaluación de la estabilidad de laderas presentes en terrenos montañosos tropicales aplicando el modelo Scoops3D,” 2018.
[43] R. Jaramillo-González, “Definición de susceptibilidad por movimientos en masa en suelo urbano escala 1:2000 a partir de modelos determinísticos usando el modelo físico distribuido de análisis de estabilidad tridimensional Scoops3D. Caso de estudio: San José la Cima,” 2019.
[44] J. Luján, “Análisis tridimensional de equilibrio límite por movimientos en masa para la cuenca hidrográfica de la quebrada La Linda en la vereda Monte Loro en Ciudad Bolívar (Antioquia) mediante el programa Scoops3D,” 2019.
[45] SGC, Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Servicio Geológico Colombiano-SGC, 2015.
[46] L. Montrasio and R. Valentino, “A model for triggering mechanisms of shallow landslides,” Natural Hazards and Earth System Sciences, vol. 8, no. 5, pp. 1149–1159, 2008. https://doi.org/10.5194/nhess-8-1149-2008
[47] S. C. Ip, H. Rahardjo, and A. Satyanaga, “Three-dimensional slope stability analysis incorporating unsaturated soil properties in singapore,” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, pp. 1–15, 2020. https://doi.org/10.1080/17499518.2020.1737880
[48] J. He, H. Qiu, F. Qu, S. Hu, D. Yang, Y. Shen, Y. Zhang, H. Sun, and M. Cao, “Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and scoops3D models,” Catena, vol. 197, p. 104999, 2021. https://doi.org/10.1016/j.catena.2020.104999
[49] R. J. Marin and Á. J. Mattos, “Physically-based landslide susceptibility analysis using monte carlo simulation in a tropical mountain basin,” Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, vol. 14, no. 3, pp. 192–205, 2020. https://doi.org/10.1080/ 17499518.2019.1633582
[50] R. J. Marin, M. F. Velásquez, and O. Sánchez, “Applicability and performance of deterministic and probabilistic physically based landslide modeling in a data-scarce environment of the Colombian Andes,” Journal of South American Earth Sciences, vol. 108, p. 103175, 2021. https://doi.org/10.1016/j.jsames.2021.103175
[51] S. Qiao, S. Qin, J. Chen, X. Hu, and Z. Ma, “The application of a three-dimensional deterministic model in the study of debris flow prediction based on the rainfall-unstable soil coupling mechanism,” Processes, vol. 7, no. 2, p. 99, 2019. https://doi.org/10.3390/pr7020099