Una generalización de Sλ-I-convergencia de sucesiones dobles complejas inciertas
Main Article Content
Keywords
λI2-convergencia, teoría de la incertidumbre, variable incierta compleja, espacios de ideales
Resumen
En este artículo, se introduce las nociones de sucesiones estadísticamente λI2-convergences las cuales son llamadas estadísticamente λI2-convergence casi seguro (Sλ(I2) c.s.), estadísticamente λI2-convergente en medida, estadísticamente λI2-convergente en media, estadísticamente λI2-convergente en distribución y estadísticamente λI2-convergente uniformemente casi seguro (Sλ(I2) u.c.s.). Adicionalmente, presentamos
algunos teoremas y relaciones existentes entre las nociones mencionadas anteriormente, asu vez, cuando el reciproco de un teorema no se satisface, se presenta un contra ejemplo para soportar el resultado.
Descargas
Referencias
[2] H. Fast, “ Sur la convergence statistique,” Colloq. Math., vol. 2, no. 1–2, pp. 241–244, 1951. http://eudml.org/doc/209960
[3] B. Liu, “Why is there a need for uncertainty theory?” Journal of Uncertain Systems, vol. 6, no. 1, pp. 3–10, 2012.
[4] I. Schoenberg, “The integrability of certain functions and related summability methods,” Am. Math. Mon., vol. 66, no. 5, pp. 361–375, 1959. https://doi.org/10.1080/00029890.1959.11989303
[5] M. Mursaleen, “λ-statistical convergence,” Math. Slovaca, vol. 50, no. 1, pp. 111–115, 2000. http://eudml.org/doc/34508
[6] P. Kostyrko, M. Macaj, T. Salat, and M. Sleziak, “ I-convergence and extremal I-limit points,” Math. Slovaca, vol. 55, pp. 443–464, 2005.
http://thales.doa.fmph.uniba.sk/sleziak../papers/iconv.pdf
[7] T. Salat, B. Tripathy, and M. Ziman, “On some properties of I-convergence,” Tatra Mt. Math. Publ., vol. 28, pp. 279–286, 2004.
[8] T. Salat, B. C. Tripathy, and M. Ziman, “I-Convergence Field,” Tatra Mt. Math. Publ., vol. 28, pp. 279–286, 2005. http://thales.doa.fmph.uniba.sk/katc/publ/salat_solid.pdf
[9] P. Das, E. Savas, and S. Ghosal, “On generalized of certain summability methods using ideals,” Appl. Math. Letter, vol. 36, no. 9, pp. 1509–1514, 2011. https://doi.org/10.1016/j.aml.2011.03.036
[10] M. Mursaleen and O. Edely, “Statistical convergence of double sequences,” J. Math. Anal. Appl., vol. 288, pp. 223–231, 2003. https://doi.org/10.1016/j.jmaa.2003.08.004
[11] P. Das, P. Kostyrko, W. Wilczynski, and P. Malik, “I and Iλ-convergence of double sequences,” Math. Slovaca, vol. 58, no. 5, pp. 1509–1514, 2008.
[12] B. Liu, Uncertainty Theory Second Edition. Springer-Verlag, 2007. https://doi.org/10.1007/978-3-540-73165-8
[13] B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer-Verlag, 2011.
[14] B. Liu, Theory and Practice of Uncertain Programming. Springer-Verlag, 2009.
[15] B. Liu and X. Chen, “ Uncertain multiobjective programming and uncertain goal programming,” Journal of Uncertainty Analysis and Applications, vol. 3, pp. 1–10, 2015. https://doi.org/10.1186/s40467-015-0036-6
[16] B. Liu, “Uncertainty risk analysis and uncertain reliability analysis,” Journal of Uncertain Systems, vol. 4, no. 1, pp. 163–170, 2010. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1057.5876&rep=rep1&type=pdf
[17] B. Liu, “Uncertainty logic for modelling human language,” Journal of Uncertain Systems, vol. 5, no. 1, pp. 3–20, 2011.
[18] B. Liu, “Fuzzy process, hybrid process and uncertain process,” Journal of Uncertain Systems, vol. 2, no. 1, pp. 3–16, 2008.
[19] K. Yao and X. Chen, “A numerical method for solving uncertain differential equations,” Journal of Intelligent & Fuzzy Systems, vol. 25, no. 3, pp. 825–832, 2013. https://doi.org/10.3233/IFS-120688
[20] X. Gao and Y. Gao, “Connectedness index of uncertain graphs,” International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems, vol. 21, no. 1, pp. 127–137, 2013. https://doi.org/10.1142/S0218488513500074
[21] B. Liu, “ Some research problems in uncertainty theory,” Journal of Uncertain Systems, vol. 3, no. 1, pp. 3–10, 2009. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.3382&rep=rep1&type=pdf
[22] X. Chen, “American option pricing formula for uncertain financial market,” International Journal of Operations Research, vol. 8, no. 2, pp. 32–37, 2011.
[23] B. Liu, “Toward uncertain finance theory,” Journal of Uncertainty Analysis and Applications, vol. 1, pp. 3–16, 2013.
[24] O. Kisi and H. Unal, “ Lacunary statistical convergence of complex uncertain sequence,” Sigma J. Eng. & Nat. Sci., vol. 10, no. 3, pp. 277–286, 2019. https://doi.org/10.5269/bspm.52688
[25] O. Kisi, “The λ-statistically convergent double sequences in fuzzy normed spaces,” hermal Science, vol. 23, no. 1, pp. 153–163, 2019.
[26] O. Kisi, “I2-λ-statistically convergence of double sequences in fuzzy normed spaces,” Journal of Intelligent and Fuzzy Systems, vol. 36, no. 4, pp. 3637–3648, 2019. https://doi.org/10.18514/MMN.2015.821
[27] Z. Peng, Complex uncertain variable. Doctoral Dissertation-Tsinghua University, 2012.
[28] C. You, “On the convergence of uncertain sequences,” Mathematical and Computer Modelling, vol. 49, no. 3–4, pp. 482–487, 2009.
https://doi.org/10.1016/j.mcm.2008.07.007
[29] H. Guo and C. Xu, “A necessary and sufficient condition of convergence in mean square for uncertain sequence,” Information: An International Interdisciplinary Journal, vol. 16, no. 2A, pp. 1091–1096, 2013.
[30] B. Tripathy and P. Nath, “Statistical convergence of complex uncertain sequences,” New Mathematics and Natural Computation, vol. 13, no. 3, pp. 359–374, 2017. https://doi.org/10.1142/S1793005717500090
[31] B. Das, B. Tripathy, P. Debnath, and B. Bhattacharya, “ Characterization of statistical convergence of complex uncertain double sequence,” Analysis and Mathematical Physics, vol. 10, no. 71, pp. 1–20, 2020. https://doi.org/10.1007/s13324-020-00419-7
[32] O. Kisi and G. E, λ-Statistically Convergence of Complex Uncertain Sequence. CMES, 2019.
[33] O. Kisi, “Sλ(I)-convergence of complex uncertain sequence,” Matematychni Studii, vol. 51, no. 2, pp. 183–194, 2019. https://doi.org/10.15330/ms.51.2.183-194
[34] C. Granados and A. Dhital, “Statistical convergence of double sequences in neutrosophic normed spaces,” Neutrosophic Sets and Systems, vol. 42, pp. 333–344, 2021. http://fs.unm.edu/NSS2/index.php/111/article/view/1294