Poschl-Teller potentials based solution to Hilbert's tenth problem

Main Article Content

Andrés Sicard
Juan Ospina


Hypercomputation, adiabatic quantum computation, Hilbert’s tenth problem.


Hypercomputers compute functions or numbers, or more generally solve problems or carry out tasks, that cannot be computed or solved by a Turing machine. An adaptation of Tien D. Kieu¿s quantum hypercomputational algorithm is carried out for the dynamical algebra su(1, 1) of the Poschl-Teller potentials. The classically incomputable problem that is resolved with this hypercomputational algorithm is Hilbert¿s tenth problem. We indicated that an essential mathematical condition of these algorithms is the existence of infinitedimensional unitary irreducible representations of low dimensional dynamical algebras that allow the construction of coherent states of the Barut-Girardello type. In addition, we presented as a particular case of our hypercomputational algorithm on Poschl-Teller potentials, the hypercomputational algorithm on an infinite square well presented previously by the authors.

PACS: 03.67.Lx

MSC: 35Q15, 68Q12


Download data is not yet available.
Abstract 388 | PDF Downloads 411


[1] Mario Vélez, Andrés Sicard and Juan Ospina. Quantum algorithm of hypercomputation based on the P¨oschl-Teller potential. Revista Colombiana de Física, 38(1), 313–316 (2006). Memorias XXI Congreso Nacional de Física. Universidad del Atlántico, Barranquilla, 24 al 28 de octubre del 2005. Eprint: http://calima.univalle.edu.co/revista/.

[2] Yuri V. Matiyasevich. Hilbert’s tenth problem. Cambridge, Massachusetts: The MIT Press, 1993.

[3] B. Jack Copeland. Hypercomputation. Minds and Machines, 12, 461–502 (2002).

[4] Andrés Sicard and Mario Vélez. Hipercomputación: la próxima generación de la computación teórica (Hypercomputation: the next generation of theoretical computation) (Spanish). Revista Universidad EAFIT, 123, 47–51 (2001). Eprint: http://sigma.eafit.edu.co:90/~asicard/archivos/hipercomputacion.pdf.gz.

[5] Tien D. Kieu. Computing the non-computable. Contemporary Physics, 44(1), 51–71 (2003).

[6] Tien D. Kieu. Quantum adiabatic algorithm for Hilbert´s tenth problem: I. The algorithm. Eprint: http://arxiv.org/abs/quant-ph/0310052 v2, 2003.

[7] Tien D. Kieu. Quantum algorithm for the Hilbert’s tenth problem. Int. J. Theor. Phys., 42(7), 1461–1478 (2003).

[8] Tien D. Kieu. Hypercomputability of quantum adiabatic processes: Fact versus prejudices. Preprint: http://arXiv.org/abs/quant-ph/0504101, 2005.

[9] Tien D. Kieu. Hypercomputation with quantum adiabatic processes. Theoretical Computer Science, 317(1–3), 93–104 (2004).

[10] Tien D. Kieu. An anatomy of a quantum adiabatic algorithm that transcends the Turing computability. International Journal of Quantum Computation, 3(1), 177–182 (2005).

[11] Boris Tsirelson. The quantum algorithm of Kieu does not solve the Hilbert’s tenth problem. Preprint: http://arXiv.org/abs/quant-ph/0111009, 2001.

[12] R. Srikanth. Computable functions, the Church-Turing thesis and the quantum measurement problem. Preprint: http://arXiv.org/abs/quant-ph/0402128, 2004.

[13] Warren D. Smith. Three counterexamples refuting Kieu’s plan for “quantum hypercomputation”; and some uncomputable quantum mechanical tasks. Applied Mathematics and Computation, 178(1), 184–193 (2006).

[14] Andrew Hodges. Can quantum computing solve classically unsolvable problems? Preprint: http://arXiv.org/abs/quant-ph/0512248, 2005.

[15] Tien D. Kieu. On the identification of the ground state based on occupation probabilities: An investigation of Smith’s apparent counterexample. Preprint: http://arXiv.org/abs/quant-ph/0602145, 2006.

[16] Tien D. Kieu. Reply to Andrew Hodges. Preprint: http://arXiv.org/abs/ quant-ph/0602214 v2, 2006.

[17] J. P. Antoine, J.-P. Gazeaub, P. Monceauc, J. R. Klauder and K. A. Penson. Temporally stable coherent states for infinite well and P¨oschl-Teller potentials. J. Math. Phys., 42(6), 2349–2387 (2001).

[18] Andrés Sicard, Juan Ospina and Mario Vélez. Numerical simulations of a possible hypercomputational quantum algorithm. In Bernardete Ribeiro et al., editors, Adaptive and Natural Computing Algorithms. Proc. of the International Conference in Coimbra, Portugal, SpringerWienNewYork, 21st - 23rd, 272–275 (March 2005).

[19] Andrés Sicard, Mario Vélez and Juan Ospina. A possible hypercomputational quantum algorithm. In E. J. Donkor, A. R. Pirich, and H. E. Brandt, editors, Quantum Information and Computation III, Proc. of SPIE, 5815, SPIE, Bellingham, WA, 219–226 (2005).

[20] Albert Messiah. Quantum mechanics, II. New York: John Wiley & Sons, 1990.

[21] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 2 edition, 1980.

[22] Xiaoguang Wang, Barry C. Sanders and Shao-hua Pan. Entangled coherent states for systems with SU(2) and SU(1, 1) symmetries. J. Phys. A: Math. Gen., 33(41), 7451–7467 (2000).

[23] J. E. Avron and A. Elgart. Adiabatic theorem without a gap condition. Commun. Math. Phys., 203(2), 444–463 (1999).

[24] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd and Oded Regev. Adiabatic quantum computation is equivalent to standard quantum computation. In Proc. of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), 42–51 (2004).