The π-geography problem and the Hurwitz problem
Main Article Content
Keywords
branched cover, critical value, Euler characteristic, Riemann–Hurwtiz formula, Hurwitz problem, π–geography, monodromy
Abstract
Let d > 2 be an integer and let π be a partition of d. This article aims to determine for which pairs of integers (a, b) there exists a branched cover F : Σ → D 2 = {z ∈ C : |z| 6 1} with χ(Σ) = −b and having a critical values, such that the monodromy obtained when traversing the boundary of D 2 once and positively belongs to the conjugacy class in the symmetric group Sd determined by π. Four variants of this question are studied: i) without requiring the connectedness of the domain, ii) requiring the connectedness of the domain, iii) without requiring the connectedness of the domain but requiring the semistability of the map, iv) requiring the connectedness of the domain and the semistability of the map. Complete solutions are obtained of the first two variants, and partial solutions are obtained of the remaining variants. The article also explains how these questions arise when analogous questions for maps whose domain is four dimensional are studied.
MSC: 11M35
Downloads
References
[2] A. Hurwitz. ¨U ber Riemann’sche Fl¨achen mit gegeben Verzweigungspunkten. Mathematische Annalen, ISSN 0025–5831, 39(1), 1–61 (1891).
[3] A. Hurwitz. ¨U ber die Anzahl der Riemann’schen Fl¨achen mit gegeben Verzweigungspunkten. Mathematische Annalen, ISSN 0025–5831, 55(1), 53–66 (1901).
[4] Stefano Monni, Jun S. Song and Yun S. Song. The Hurwitz enumeration problem of branched covers and Hodge integrals. Journal of Geometry and Physics, ISSN 0393–0440, 50(1–4), 223–256 (2004).
[5] C. L. Ezell. Branch point structure of covering maps onto nonorientable surfaces. Transactions of the American Mathematical Society, ISSN 0002–9947, 243, 122–133 (1978).
[6] R. Thom. L’equivalence d’une fonction diff´erentiable et d’un polinome. Topology 3 suppl. 2, 297–307 (1965).
[7] A. G. Khovanskii and S. Zdravkovska. Branched covers of S2 and braid groups. Journal of Knot Theory and Its Ramifications, ISSN 0218–2165, 5(1), 55–75 (1996).
[8] K. Baranski. On realizability of branched coverings of the sphere. Topology and its Applications, ISSN 0166–8641, 116(3), 279–291 (2001).
[9] Allan L. Edmonds, Ravi S. Kulkarni and Robert E. Stong. Realizability of branched coverings of surfaces. Transactions of the American Mathematical Society, ISSN 0002–9947, 282(2), 773–790 (1984).