Optimización simultánea para la mejora continua y reducción de costos en procesos

Main Article Content

Jorge Domínguez Domínguez


designs of experiments, models, loss function, optimization multi–response, graphic method.


Many problems of optimization are characterized by the flexibility to establish the utility among the functions objectives. Experimental strategy plays a very important part for generating theses functions. This specific strategy has also been applied in an important way to reduce costs when desiring quality and its continuous improvement in processes and products. It is common to find many industrial applications with several responses whose purpose is to reach the global level of quality of a product. Therefore it is necessary to simultaneously optimize in a simultaneous the responses that the researcher desires. In essence, the problem of optimization of various responses involves the selection of a set of conditions or independent variables such that give a product or some convenient service an ideal result. The wish is to select the levels of independent variables that optimize all the responses at the same time. Two procedures will be displayed here in order to build a function that represents a combination of the objectives of the individual responses. The first method is a model of optimization multiplicativo and the second additive. These will be applied to two cases of study which will be carried out in the industry for the purpose of pointing out the processes of continuous improvement and the decrease in costs. The simultaneous optimization, using these two procedures, will be illustrated by graphical means. This will allow a generation of several scenarios showing possible optimum solutions. In these examples it was observed that both methods produce similar results when generating the optimum one, however when comparing them in a global way by means of the loss function a slight difference it exists among them.

MSC: 62-XX, 62Kxx


Download data is not yet available.
Abstract 2923 | PDF (Español) Downloads 2784


[1] F. J. Kros and C. M. Mastrangelo. Comparing Multi-response Design Methods with Mixed Responses. Qual. Reliab. Eng. Int., 20(5), 527-539 (2004).

[2] P. Kumar and P. Goel. Product Quality Optimization Using Fuzzy Set Concepts: A Case Study. Qual. Eng., 15(1), 1-8 (2002).

[3] G. E. P. Box and N. R. Draper. Empirical Model Building and Response Surfaces, ISBN: 0-471-81033-9. New York: John Wiley & Sons, 1987.

[4] G. Derringer and R. Suich. Simultaneous Optimization of Several Response Va- riables. Journal of Quality Technology, 12, 214-219 (1980).

[5] G. Derringer. A Balancing Act: Optimizing a Product’s Properties. Quality Progress, 51-58 (1994).

[6] M. A. Zeleney. A Concept of Compromise Solutions and Method of Displaced Ideal. Comput. Oper. Res., 1, 479-496 (1974).

[7] T. E. Castaño y D. J. Domínguez. Experimentos: Estrategia y Análisis en Ciencia y Tecnología. Ediciones CIMAT, 2004. Distribuci´on: www.cimat.mx

[8] A. E. Ames, M. Mattucci, M. Stephen, G. Szonyi and D. M. Hawkins. Quality Loss Functions for Optimization Across Multiple Response Surfaces. Journal of Quality Technology, 29, 339-346 (1997).

[9] R. Myers and D. C. Montgomery. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley Series in Probability and Statistics, New York, 2002.

[10] Minitab 2003. Release 14 for Windows, by Minitab Inc. USA.

[11] F. Ortiz, J. Simpson and J. Pignatiello. A genetic Algorithm Approach to Multiple-Response Optimization. Journal of Quality Technology, 36, No. 4, 432- 450 (2004).