Reuse of a residue from petrochemical industry with portland cement

Main Article Content

Janneth Torres Agredo https://orcid.org/0000-0002-4094-8387
Jenny J Trochez Serna
Ruby Mejía de Gutierrez https://orcid.org/0000-0002-5404-2738

Keywords

Spent fluid catalytic cracking catalyst, heavy metals, stabilization/solidification, blended cement.

Abstract

In this article the possibility of using waste from the petrochemical industry,as partial replacement of Portland cement is studied, evaluating the presence
of contaminants in the waste and the encapsulation, once it is confined on the cement. This has been done, in order to find a use to this residue without cause damage to the environment. This residue, called spent fluid catalytic cracking catalyst (FCC), is mainly formed by a type Y zeolite, which is dispersing in an inorganic oxides matrix. The toxicity characteristic leaching proceeding was applied, in mortars adding with 20% of FCC as Portland cement replacement. The results showed that the residue does not represent a problem from the point of view of the leaching of elements, such as As, Pb, Zn, Cr, and La, which were below to the permissible limits. Additionally, the pozzolanic activity of FCC was evaluated according to ASTM C311, where the efficiency of the residue as pozzolanic addition is demonstrated. With the results the importance of reusing a residue of the petrochemical industry is emphasized, that decreases the amount of cement to be used and improves the mechanical resistance of the materials containing it.

PACS: 81., 87.64.Ee

Downloads

Download data is not yet available.
Abstract 1286 | PDF (Español) Downloads 510

References

[1] MD. LaGrega, PL. Buckingham, JC. Evans. Hazardous wastes management, ISBN 9780070195523. McGraw-Hill, New Jersey, 1994.

[2] M. Frías, M. Sánchez de Rojas, O. Rodríguez. Novedades en el reciclado de materiales en el sector de la construcción: Adiciones puzolánicas, II Jornadas de investigación n Construcción , ISBN 978-84-7292-367-6. Madrid,2008.

[3] TE. Mayers, ME. Eappi. Laboratory evaluation of stabilization/solidification technology for reducing the mobility of heavy metals in New Bedford Harbor superfund site sediment Stabilization of hazardous Radioactive and mixed wastes. ISBN 978-0-8031-5186-4. ASTM publication, Philadelphia, 1992.

[4] C. Shi, RL. Day, X. Wu, M. Tang. Uptake of metal ions by autoclaved cement pastes.. Proceedings of Materials Research Society, ISSN 1946-4274, 245, 1141- 149 (1992).

[5] M. Bhatty. Fixation of metallic ions in Portland Cement. 4th national conference on hazardous wastes and hazardous materials , ISBN 0944989454. Washington, 140-145 (1987).

[6] SY. Hong, FP. Glasser. Alkali sorption by C-S-H and C-A-S-H gels -part II, role of alumina. Cement and Concrete Research, ISSN 0008-8846, 32(7), 1101-1111 (2002).

[7] A. Hidalgo, C. Alonso. Evaluación del impacto medioambiental debido a la lixiviación de productos de base cemento. las jornadas de investigación en construcción, ISBN 84-931709-4-1, Madrid, 571-581(2005).

[8] E. Furimsky. Review of spent refinery catalyst: environment, safety and utilization. Catalysis today, ISSN 0920-5861, 30, 223-86 (1996).

[9] SK. Antiohos, E. Chouliar, S. Tsimas. Re-use of spent catalyst from oilcracking refineries as supplementary cementing material . Journal China Particuology, ISSN 1674-2001, 4(2), 73-76 (2006).

[10] J. Payá, J. Monzó, M. Borrachero, S. Velázquez. Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R), Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, ISSN 0008-8846, 33, 603-609 (2003).

[11] B. Pacewska, M. Burowska, I. Ska, M. Swat. Modification of properties of concrete by a new pozzolan a waste catalyst from the catalytic process in a fluidized bed. Cement and Concrete Research, ISSN 0008-8846, 32, 145-152 (2002).

[12] J. Payá, J. Monzó, M. Borrachero. Fluid catalytic cracking catalyst residue (FC3R) an excellent mineral by-product for improving early strength develop- ment of cement mixtures. . Cement and Concrete Research, ISSN 0008-8846, 29, 1773-1779 (1999).

[13] J. Payá, J. Monzó, M. Borrachero. Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cement and Concrete Research, ISSN 0008-8846, 31, 57-61 (2001).

[14] J. Torres, E. Baquero, A. Silva. Evaluación de la actividad puzolánica de un residuo de un residuo de la industria del petróleo. Revista Dyna, ISSN 0012-7353, 76(158), 49-53 (2009).

[15] EPA Test Method 1311 - TCLP. Toxicity Characteristic Leaching Procedure. Code of Federal Regulations, 40 CFR part 261, appendix II . Julio 1991.

[16] Instituto de Hidrolog´ıa, Meteorolog´ıa y estudios ambientales, IDEAM Decreto 1594 DE 1984, Usos del agua y residuos l´ıquidos. Bogot´a D. C., Junio 26 de 1984.

[17] Agencia de Protecci´on ambiental de los Estados Unidos, EPA. Est´andares del Reglamento Nacional Primario de Agua Potable. EPA 815-F-00-007, Abril de 2000. http://water.epa.gov/drink/guide/upload/book_waterontap_full.pdf, Marzo de 2011.

[18] Organización Mundial de la Salud, OMS. Directrices de la OMS para la calidad del agua potable. 1993 . http://www.aguaessalud.com/directricesOMSaguapotable.html, Enero de 2011.

[19] EM. Flanigen, LB. Sand. Molecular sieve zeolites-I, Advances in Chemistry Series, American Chemical Society ISBN 0065-2393. Washington, 1971.

[20] U. Rattanasak, Ch. jaturapitakkul, T. Sudaprasert. Compressive strength and heavy metal leaching behaviour of mortars containing spent catalyst . Waste Management & Research, ISSN 1096-3669, 19,456-464 (2001).

[21] D. Sun, X. Li, M. Brungs, D. Trimm. Encapsulation of heavy metals on spent fluid catalytic cracking catalyst.. Water Science Technology, ISSN 0273-1223, 38(4-5), 211-217 (2001).

[22] FP. Glasser. Fundamental aspect of cement solidification and stabilization. Journal of Hazardous Materials, ISSN 0304-3894, 52, 151-170 (1997).

[23] H-L. Chena, Y-S. Tsengb, K-Ch. Hsu. Spent FCC catalyst as a pozzolanic material for high-performance mortars. Cement and Concrete Research, ISSN 0008- 8846, 26, 657-664 (2004).

[24] J. Payá, J. Monzó, M. Borrachero, S. Velázquez, M. Bonilla. Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R- lime pastes. Cement and Concrete Research, ISSN 0008- 8846, 33, 1085-1091 (2003).

[25] J. Payá, J. Monzó, M. Borrachero, S. Velázquez. Chemical activation of pozzolanic reaction of fluid catalytic cracking residue (FC3R) in lime pastes: thermalanalysis. Advances in Cement Research, ISSN 0951-7197, 16(3), 123-130 (2004).

[26] J. Payá, J. Monzó, M. Borrachero, S. Velázquez. The chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes. Advances in Cement Research, ISSN 0951-7197, 19(1), 9-16 (2007).

[27] J. Trochez, J. Torres, R. Mejía de Gutiérrez. Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catal´ıtico usado (FCC) de una refinería colombiana. Revista Facultad de Ingeniería Universidad de Antioquia, ISSN 0120-6230, 55, 26 -34 (2010).