Anomalous Localization of Light in One-Dimensional Disordered Photonic Superlattices

Main Article Content

D Aristizábal-Giraldo
E Reyes-Gómez

Keywords

anderson localization, anomalous phenomenon brewster, optical Impedance.

Abstract

The Anderson localization of light in one-dimensional disordered photonic superlattices is theoretically studied. The system is considered to be made of alternating dispersive and nondispersive layers of different randomthickness. Dispersive slabs of the heterostructure are characterized by Drude-like frequency-dependent electric permittivities and magnetic permeabilities. Numerical results for the localization length are obtained via an analytical model, only valid in the case of weak disorder, and also through its general definition involving the transmissivity of the multilayered system. Anomalous λ4- and  λ-4-dependencies of the localization length in positive-negative disordered photonic superlattices are obtained, in certain cases, in the long and short wavelength limits, respectively.


PACS: 78.67.Pt; 42.25.-p; 46.65.+g; 72.15.Rn

Downloads

Download data is not yet available.
Abstract 936 | PDF Downloads 522 HTML Downloads 610

References

[1] A. G. Aronov and V. M. Gasparian, “Brewster anomaly and transmission of light through one-dimensional random layered system,” Solid State Communications, vol. 73, pp. 61 64, 1990.

[2] A. G. Aronov, V. M. Gasparian and U. Gummich, “Transmission of waves through one-dimensional random layered systems,” J. Phys.: Condens. Matter, vol. 3, pp. 3023, 1991.

[3] J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Advances in Physics, vol. 43, pp. 461-542, 1994.

[4] M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B, vol. 59, pp. 12767-12770, 1999.

[5] J. Bertolotti, S. Gottardo and D. S. Wiersma, “Optical Necklace States in Anderson Localized 1D Systems,” Phys. Rev. Lett., vol. 94, pp. 113903, 2005.

[6] J. Bertolotti, M. Galli, R. Sapienza, M. Ghulinyan, S. Gottardo, L. C. Andreani, L. Pavesi and D. S. Wiersma, “Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior,” Phys. Rev. E, vol. 74, pp. 035602, 2006.

[7] S. F. Liew and H. Cao, “Optical properties of 1D photonic crystals with correlated and uncorrelated disorder,” Journal of Optics, vol. 12, pp. 024011, 2010.

[8] A. R. McGurn, K. T. Christensen, F. M. Mueller and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B, vol. 47, pp. 13120-13125, 1993.

[9] D. S. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, “Localization of light in a disordered medium,” Nature, vol. 390, pp. 671-673, 1997.

[10] J. Topolancik, B. Ilic and F. Vollmer, “Experimental Observation of Strong Photon Localization in Disordered Photonic CrystalWaveguides,” Phys. Rev. Lett., vol. 99, pp. 253901, 2007.

[11] A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. McPhedran and Y. S. Kivshar, “Suppression of Anderson Localization in Disordered Metamaterials,” Phys. Rev. Lett., vol. 99, pp. 193902, 2007.

[12] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides and Y. Silberberg, “Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices,” Phys. Rev. Lett., vol. 100, pp. 013906, 2008.

[13] F. M. Izrailev and N. M. Makarov, “Localization in Correlated Bilayer Structures: From Photonic Crystals to Metamaterials and Semiconductor Superlattices,” Phys. Rev. Lett., vol. 102, pp. 203901, 2009.

[14] D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti and L. E. Oliveira, “Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial,” Phys. Rev. B, vol. 82, pp. 081105, 2010.

[15] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, 2000.

[16] A. A. Asatryan, S. A. Gredeskul, L. C. Botten, M. A. Byrne, V. D. Freilikher, I. V. Shadrivov, R. C. McPhedran and Y. S. Kivshar, “Anderson localization of classical waves in weakly scattering metamaterials,” Phys. Rev. B, vol. 81, pp. 075124, 2010.

[17] P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, New York, 1995).

[18] D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti and L. E. Oliveira, “Light propagation and Anderson localization in disordered superlattices conLight propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: Effects of correlated disorder,” Phys. Rev. B, vol. 84, pp. 094204, 2011.

[19] E. Reyes-Gómez, A. Bruno-Alfonso, S. B. Cavalcanti and L. E. Oliveira, “Anderson localization and Brewster anomalies in photonic disordered quasiperiodic lattices,” Phys. Rev. E, vol. 84, pp. 036604, 2011.

[20] M. Mazilu and K. Dholakia, “Optical impedance of metallic nano-structures,” Optics Express, vol. 14, pp. 7709-7722, 2006.