Localización anómala de la luz en superredes fotónicas unidimensionales desordenadas

Main Article Content

D Aristizábal-Giraldo
E Reyes-Gómez

Keywords

Localización de Anderson, anomalías de Brewster, superredes fotónicas.

Resumen

La localización de Anderson de la luz en superredes fotónicas desordenadas unidimensionales es estudiada teóricamente. El sistema se considera compuesto de capas alternadas dispersivas y no dispersivas de diferentes espesores aleatorios. Las capas dispersivas de la heteroestructura están caracterizadas por permitividades eléctricas y permeabilidades magnéticas tipo Drude dependientes de la frecuencia. Los resultados numéricos para la longitud de la localización son obtenidos mediante un modelo analítico, solo válido en caso de desorden débil, y también a través de la definición general que involucra la transmisividad del sistema multicapas. Las dependencias anómalas λ4 y λ-4 de la longitud de localización en superredes fotónicas desordenadas son obtenidas, en ciertos casos, en los límites de longitudes de onda larga y corta, respectivamente. 


PACS: 78.67.Pt; 42.25.-p; 46.65.+g; 72.15.Rn

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 956 | PDF (English) Downloads 543 HTML (English) Downloads 615

Referencias

[1] A. G. Aronov and V. M. Gasparian, “Brewster anomaly and transmission of light through one-dimensional random layered system,” Solid State Communications, vol. 73, pp. 61 64, 1990.

[2] A. G. Aronov, V. M. Gasparian and U. Gummich, “Transmission of waves through one-dimensional random layered systems,” J. Phys.: Condens. Matter, vol. 3, pp. 3023, 1991.

[3] J. B. Pendry, “Symmetry and transport of waves in one-dimensional disordered systems,” Advances in Physics, vol. 43, pp. 461-542, 1994.

[4] M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas and K. M. Ho, “Effect of disorder on photonic band gaps,” Phys. Rev. B, vol. 59, pp. 12767-12770, 1999.

[5] J. Bertolotti, S. Gottardo and D. S. Wiersma, “Optical Necklace States in Anderson Localized 1D Systems,” Phys. Rev. Lett., vol. 94, pp. 113903, 2005.

[6] J. Bertolotti, M. Galli, R. Sapienza, M. Ghulinyan, S. Gottardo, L. C. Andreani, L. Pavesi and D. S. Wiersma, “Wave transport in random systems: Multiple resonance character of necklace modes and their statistical behavior,” Phys. Rev. E, vol. 74, pp. 035602, 2006.

[7] S. F. Liew and H. Cao, “Optical properties of 1D photonic crystals with correlated and uncorrelated disorder,” Journal of Optics, vol. 12, pp. 024011, 2010.

[8] A. R. McGurn, K. T. Christensen, F. M. Mueller and A. A. Maradudin, “Anderson localization in one-dimensional randomly disordered optical systems that are periodic on average,” Phys. Rev. B, vol. 47, pp. 13120-13125, 1993.

[9] D. S. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, “Localization of light in a disordered medium,” Nature, vol. 390, pp. 671-673, 1997.

[10] J. Topolancik, B. Ilic and F. Vollmer, “Experimental Observation of Strong Photon Localization in Disordered Photonic CrystalWaveguides,” Phys. Rev. Lett., vol. 99, pp. 253901, 2007.

[11] A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. McPhedran and Y. S. Kivshar, “Suppression of Anderson Localization in Disordered Metamaterials,” Phys. Rev. Lett., vol. 99, pp. 193902, 2007.

[12] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides and Y. Silberberg, “Anderson Localization and Nonlinearity in One-Dimensional Disordered Photonic Lattices,” Phys. Rev. Lett., vol. 100, pp. 013906, 2008.

[13] F. M. Izrailev and N. M. Makarov, “Localization in Correlated Bilayer Structures: From Photonic Crystals to Metamaterials and Semiconductor Superlattices,” Phys. Rev. Lett., vol. 102, pp. 203901, 2009.

[14] D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti and L. E. Oliveira, “Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial,” Phys. Rev. B, vol. 82, pp. 081105, 2010.

[15] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187, 2000.

[16] A. A. Asatryan, S. A. Gredeskul, L. C. Botten, M. A. Byrne, V. D. Freilikher, I. V. Shadrivov, R. C. McPhedran and Y. S. Kivshar, “Anderson localization of classical waves in weakly scattering metamaterials,” Phys. Rev. B, vol. 81, pp. 075124, 2010.

[17] P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, New York, 1995).

[18] D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti and L. E. Oliveira, “Light propagation and Anderson localization in disordered superlattices conLight propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: Effects of correlated disorder,” Phys. Rev. B, vol. 84, pp. 094204, 2011.

[19] E. Reyes-Gómez, A. Bruno-Alfonso, S. B. Cavalcanti and L. E. Oliveira, “Anderson localization and Brewster anomalies in photonic disordered quasiperiodic lattices,” Phys. Rev. E, vol. 84, pp. 036604, 2011.

[20] M. Mazilu and K. Dholakia, “Optical impedance of metallic nano-structures,” Optics Express, vol. 14, pp. 7709-7722, 2006.