Nanoindentation based on force spectroscopy with an atomic force

Main Article Content

Mauricio Arroyave Franco

Keywords

atomic force, force spectroscopy, nanoindentation.

Abstract

An implementation of the method for surface indentation based on Atomic Force Microscopy (AFM), is presented. The implementation was done using the Force Spectroscopy (FS) usually enabled on this instruments which allow vertical movement of the AFM tip without lateral displacement. Determination of the sensitive factor of the AFM cantilever was necessary to know the applied forces in the indentation process. Force versus depth curves similar to Depth–Sensing Indentation (DSI) curves were obtained however these cannot be used for mechanical diagnostics with Oliver & Pharr method. Indentations about 1 nm and 50 nm of depth on polycrystalline Silicon and 6261 Aluminium alloy respectively were produced. These open important applicationsin materials nanotechnology.

PACS: 07.79.Lh,34.20.Cf, 07.75.+h

Downloads

Download data is not yet available.
Abstract 690 | PDF (Español) Downloads 285

References

[1] Anthony C. Fischer Cripps. Nanoindentation (Mechanical engineering series), ISBN 0–387–22045–3. Springer, New York, 2004.

[2] Mauricio Arroyave. Nanocaracterización estructural y mecánica de recubrimientos de TiN y ZrN producidos por descarga de arco pulsado. Tesis de maestría en ciencias físicas. Universidad Nacional de Colombia, Sede Manizales, 2004.

[3] K. L. Johnson, K. Kendall and A. D. Roberts. Surface Energy and the Contact of Elastic Solids. Proceedings of the Royal Society of London. Series A, ISSN 1364–5021, 324(1558), 301–313 (1971).

[4] B. V. Derjaguin, V. M. Muller and Yu. P. Toporov. Effect of contact deformations on the adhesion of particles. Journal of colloid and interface science, ISSN 0021– 9797, 53(2), 314–326 (1975).

[5] M. Barquins and D. Maugis. Fracture mechanics and the adherence of viscoelastic bodies. Journal of Physics D: Applied Physics, ISSN 0022-3727, 11(14), 1989–2023 (1978).

[6] M. R. VanLandingham, S. H. McKnight, G. R. Palmese, J. R. Elings, X. Huang, T. A. Bogetti, R. F. Eduljee and J. W. Gillespie, Jr. Nanoscale Indentation of Polymer Systems Using the Atomic Force Microscope. The journal of Adhesion, ISSN 0021–8464, 64(1–4), 31–59 (1997).

[7] N. A. Burnham and R. J. Colton. Nanomechanics. Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, Second edition, ISBN 0–471–24824–X. Wiley–VCH, USA, 2000.
[8] I. N. Sneddon. The relation between load and penetration in the axisymmetric Boussines problem for a punch of arbitrary profile. International Journal of Engineering Science, ISSN 0020–7225, 3(1), 47–57 (1965).

[9] E. Martínez and J. Esteve. Nanoindentation hardness measurements using realshape indenters: application to extremely hard and elastic materials. Applied physics. A, Materials science & processing, ISSN 0947–8396, 72(3), 319–324 (2000).

[10] S. A. Syed, R. J. Colton and K. J. Wahl. Nanoscale surface mechanical property measurements: Force modulation techniques applied to nanoindentation. Interfacial properties on the submicron scale, ISBN 9780841236912, J. Frommer and R. Overney editors. ACS Books, 2000.