Microdeformation measurement of concrete roadway slabs using fiber Bragg gratings

Main Article Content

Francisco Javier Vélez Hoyos
Claudia Milena Serpa Imbet
Nelson Darío Gómez Cardona


fiber optic sensors, optical fiber Bragg gratings, concrete roadway slabs, finite element method


This work shows a non–invasive method for micro–deformation measurements of concrete structures using Bragg grating sensors in optical fibers adhered to the surface. Measurements on roadway slabs under a 10 kN static load are made, finding an approximated ratio of 2 : 1 between the deformation registered by the sensors and the values from a computational simulation with the finite element method. We propose the use of these sensors for slab structural monitoring in a road network employing distributed and wavelength multiplexed sensors. This is a first report in Colombia of roadway slabs microdeformation measurement using fiber optic sensors.

PACS: 42.81.-i, 47.11.Fg, 42.79.Dj

MSC: 76M10


Download data is not yet available.
Abstract 1054 | PDF (Español) Downloads 336


[1] F. A. Reyes. Diseño racional de pavimento, ISBN 978–9–5868–3622–7, Escuela Colombiana de Ingeniería y Pontificia Universidad Javeriana 2003.

[2] E. Pinet, C. Hamel, B. Gliˇsic, D. Inaudi and N. Miron. Health monitoring with óptical fiber sensors: from human body to civil structures. Proceedings of SPIE, the International Society for optical Engineering, ISSN 0277–786X, San Diego, USA, 6532, 549–561 (2007).

[3] C. U. Grosse, C. Gehlen and S. D. Glaser. Sensing methods in civil engineering for an efficient construction management . Advances in Construction Materials, ISBN 978–3–5407–2448–3, Springer Berlin Heidelberg, 2007.

[4] R. Liu, X. Chen, J. Li, L. Guo and A. J. Yu. Evaluating innovative sensors and techniques for measuring traffic loads: final report , Technical Report, Houston, USA, 2006.

[5] P. Chaube, B. G. Colpitts, D. Jagannathan and A. W. Brown. Distributed Fiber- Optic Sensor for Dynamic Strain Measurement . IEEE Sensors Journal, ISSN 1530–437X, 8(7), 1067–1072 (2008).

[6] S. Yin, P. B. Ruffin and F. T. S. Yu. Fiber Optic Sensors, second edition, ISBN 978–1–4200–5365–4, CRC Press, 2008.

[7] P. Childs, A. C. L. Wong, W. Terry and G. D. Peng. Measurement of crack formation in concrete using embedded optical fibre sensors and differential strain analysis. Measurement science and technology, ISSN 0957–0233, 19(6), pp. 065301 (2008).

[8] Q. Li, G. Li, G. Wang and L. Yuanb. CTOD measurement for cracks in concrete by fiber optic sensors. Optics and Lasers in Engineering, ISSN 0143–8166, 42(4), 377–388 (2004).

[9] L. Yuan, Q. Li, Y. Liang, J. Yang and Z. Liu. Fiber optic 2-d sensor for measuring the strain inside the concrete specimen, Sensors and Actuators A: Physical, ISSN 0924–4247, 94(1-2), 25–31 (2001).

[10] C. Spyrakos. Finite Element Modeling In Engineering Practice, ISBN 978-0- 9641-9391-8, West Virginia University Press, 1994.

[11] R. Chandwani,M.Wiehahn and C. Trimbell. 3D Fracture mechanics in ANSYS, UK ANSYS conference, Warwickshire, UK, 2004.

[12] Metroplús S. A.,Web-Site: http://www.metroplus.gov.co/metroplus/index.php? sub cat=0, 2009.

[13] R. M. Mulungye, P. M. O. Owende and K. Mellon. Finite element modelling of flexible pavements on soft soil subgrades, Materials & Design, ISSN 0264–1275, 28(3), 739–756 (2007).

[14] M. Y. Darestani, D. P. Thambiratnam, A. Nataatmadja and D. Baweja. Experimental study on structural response of rigid pavements under moving truck load, Journal of transportation Engineering, ISSN 0733–947X, 133(12), 670–676 (2007).