Improvement of proton-exchange membranes based on (1-x)(H3PO2/PVA)-xTiO2

Main Article Content

M E Fernandez http://orcid.org/0000-0003-4228-9693
G Murillo http://orcid.org/0000-0001-5172-4584
R A Vargas http://orcid.org/0000-0002-2295-373X
D Peña Lara http://orcid.org/0000-0001-6199-1547
J E Diosa http://orcid.org/0000-0002-1919-1922

Keywords

Composite polymer membranes, PVA, Hypophosphorous acid, Proton conduction, DC conductivity

Abstract

Using impedance spectroscopy (IS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and infrared spectroscopy (IR) techniques to study the polymer electrolyte membranes based on poly(vinyl alcohol) (PVA) and hypophosphorous acid (H3 PO2) with different titanium oxide nanoparticles (TiO$_2$) concentrations. The polymer systems (1-x)(H3 PO2/ PVA) + xTiO2 were prepared using the sol-casting method and different weight percent of TiO2, x≤ 10.0%. The DSC results show that the glass transition for molar fraction P/OH = 0.3 appears around 75°C and for the samples doped with TiO2 around 35°C the melting point for all membranes appear around 175°C. The FTIR spectra show changes in the profiles of the absorption bands with the addition of H3 PO2 and the different concentrations of TiO2. The IS results show dielectric and conductivity relaxations as well as a change in DC ionic conductivity with the TiO$_2$ content. The order of the ionic conductivity is about 10-2 S/cm for 5.0% of TiO2. The TGA in the heating run shows water loss that is in agreement with de DC conductivity measurements.

Downloads

Download data is not yet available.
Abstract 898 | PDF Downloads 552

References

[1] B. Smitha, S. Sridhar, and A. Khan, “Solid polymer electrolyte membranes for fuel cell applications –a review,” J. Membrane Science, vol. 259, pp. 10–26, 2005.

[2] J. Rao and K. Geckeler, “Polymer nanoparticles: Preparation techniques and size-control parameters,” Progress in Polymer Science, vol. 48, pp. 887–913, 2003.

[3] H. Zhang and S. P. Kang, “Recent Development of Polymer Electrolyte Membranes for Fuel Cells,” Chem. Rev., vol. 112, pp. 2 780–2 832, 2012.

[4] A. Mazuera and R. Vargas, “Electrical Properties and Phase Behavior of Proton Conducting Nanocomposites Based on the Polymer System (1-x)[PVOH + H3PO2 + H2O]·x(Nb2O5),” Am. J. Analytical Chem., vol. 5, pp. 301–307, 2014.

[5] J. B. Goodenough, “Proton conductors: Solids, membranes, and gels–materials and devices. edited by phillippe colomban, cambridge university press, cambridge, uk 1992, £ 75, xxxii, 581 pp., hardcover, isbn 0-521-38317-x,” Advanced Materials, vol. 5, no. 9, pp. 683–685, 1993. [Online]. Available: http://dx.doi.org/10.1002/adma.19930050923

[6] S. Banerjeea and D. Curtin, “Nafion® perfluorinated membranes in fuel cells,” J. Fluorine Chem., vol. 125, pp. 1211–1216, 2004.

[7] K. Gong and H. Shou-Cai, “Electrical Properties of Poly(Vinyl Alcohol) Complexed with Phosphoric Acid,” Mater. Res. Soc. Symp. Proc., vol. 135, pp. 377–382, 1989.

[8] M. Vargas, R. Vargas, and B.-E. Mellander, “More studies on the PVAl+H3PO2 + H2O proton conductor gels,” Electrochimical Acta, vol. 45, pp. 1 399–1 403, 2000.

[9] I. Palacio, R. Castillo, and R. Vargas, “Thermal and transport properties of the polymer electrolyte based on poly (vinyl alcohol) –KOH-H2O,” Electrochemical Acta, vol. 48, pp. 2195–2199, 2003.

[10] V. Zapata, W. Castro, R. Vargas, and B.-E. Mellander, “More studies on the PVOH-LiH2PO4 polymer system,” Electrochimical Acta, vol. 53, pp. 1476–1480, 2007.

[11] W. Castro, V. Zapata, R. Vargas, and B.-E. Mellander, “Electrical conductivity relaxation in PVOH-LiClO4-Al2O3,” Electrochimica Acta, vol. 53, pp. 1422–1426, 2007.

[12] M. Fernández, J. Castillo, F. Bedoya, J. Diosa, and R. Vargas, “Dependence of the mechanical and electrical properties on the acid content in PVA + H3PO2 + H2O membranes,” Rev. Mex. Física, vol. 60, pp. 249–252, 2014.

[13] C. Yang, “Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC,” Electrochimical Acta, vol. 288, pp. 51–60, 2007.

[14] M. Fernández, J. Diosa, R. Vargas, J. Guerra, C. Villaquiran, D. García, and J. Eiras, “Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes,” Phys. Stat. Sol. (c), vol. 4, pp. 4075–4080, 2007.

[15] P. Ahmadpoor, A. Nateri, and V. Motaghitalab, “The Optical Properties of PVA/TiO2 Composite Nanofibers,” J. Applied Polymer Science, vol. 130, pp.78–85, 2013.

[16] J. Ahmad, K. Deshmukh, M. Habib, and M. Hägg, “Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes,” J. Sci. Eng., vol. 39, pp. 6805–6814, 2014.

[17] A. Jonscher, Universal relaxation law: a sequel to Dielectric relaxation in solids. Chelsea Dielectrics Press, 1996.

[18] G. Casalbore-Miceli, M. Yang, M. Camaioni, C.-M. Mari, Y. Li, M. Sun, and H. Ling, “Investigations on the ion transport mechanism in conducting polymer films,” Sol. Stat. Ionics, vol. 131, pp. 6 805–6 814, 2000.