Mejoras en membranas de intercambio protónico (1—x)(H3PO2/PVA)-xTiO2
Main Article Content
Keywords
membranes poliméricas compositos, PVA, conducción protónica.
Resumen
Usando las técnicas de espectroscopia de impedancia (IS), calorimetría de barrido diferencial (DSC), análisis termogravimetrico (TGA) y espectroscopia infrarroja (FTIR) se estudió el sistema polimérico (1—x)(H3PO2/ PVA) + xTiO2 el cual fue preparado usando el método de sol-casting a diferentes porcentaje de peso de nanopartículas de TiO2, x≤10.0% Los resultados de DSC muestran que la transición vítrea para la fracción molar de P/OH = 0.3 emerge alrededor de 75°C y para las muestras dopadas con TiO2 alrededor de 35°C el punto de fusión para todas las membranas aparece alrededor de los 175°C. Los espectros de FTIR muestran cambios en los perfiles de las bandas de absorción con la adicción del H3PO2 y las diferentes concentraciones de TiO2. Los resultados de IS muestran relajaciones dieléctricas y de conductividad al igual que un cambio en la conductividad iónica DC con el contenido de TiO2. La conductividad iónica es del orden de 10-2 S/cm para 5.0% de TiO2. Los TGA en los barridos de calentamiento muestran pérdida de agua lo cual está de acuerdo con las medidas de conductividad DC.
Descargas
Referencias
[2] J. Rao and K. Geckeler, “Polymer nanoparticles: Preparation techniques and size-control parameters,” Progress in Polymer Science, vol. 48, pp. 887–913, 2003.
[3] H. Zhang and S. P. Kang, “Recent Development of Polymer Electrolyte Membranes for Fuel Cells,” Chem. Rev., vol. 112, pp. 2 780–2 832, 2012.
[4] A. Mazuera and R. Vargas, “Electrical Properties and Phase Behavior of Proton Conducting Nanocomposites Based on the Polymer System (1-x)[PVOH + H3PO2 + H2O]·x(Nb2O5),” Am. J. Analytical Chem., vol. 5, pp. 301–307, 2014.
[5] J. B. Goodenough, “Proton conductors: Solids, membranes, and gels–materials and devices. edited by phillippe colomban, cambridge university press, cambridge, uk 1992, £ 75, xxxii, 581 pp., hardcover, isbn 0-521-38317-x,” Advanced Materials, vol. 5, no. 9, pp. 683–685, 1993. [Online]. Available: http://dx.doi.org/10.1002/adma.19930050923
[6] S. Banerjeea and D. Curtin, “Nafion® perfluorinated membranes in fuel cells,” J. Fluorine Chem., vol. 125, pp. 1211–1216, 2004.
[7] K. Gong and H. Shou-Cai, “Electrical Properties of Poly(Vinyl Alcohol) Complexed with Phosphoric Acid,” Mater. Res. Soc. Symp. Proc., vol. 135, pp. 377–382, 1989.
[8] M. Vargas, R. Vargas, and B.-E. Mellander, “More studies on the PVAl+H3PO2 + H2O proton conductor gels,” Electrochimical Acta, vol. 45, pp. 1 399–1 403, 2000.
[9] I. Palacio, R. Castillo, and R. Vargas, “Thermal and transport properties of the polymer electrolyte based on poly (vinyl alcohol) –KOH-H2O,” Electrochemical Acta, vol. 48, pp. 2195–2199, 2003.
[10] V. Zapata, W. Castro, R. Vargas, and B.-E. Mellander, “More studies on the PVOH-LiH2PO4 polymer system,” Electrochimical Acta, vol. 53, pp. 1476–1480, 2007.
[11] W. Castro, V. Zapata, R. Vargas, and B.-E. Mellander, “Electrical conductivity relaxation in PVOH-LiClO4-Al2O3,” Electrochimica Acta, vol. 53, pp. 1422–1426, 2007.
[12] M. Fernández, J. Castillo, F. Bedoya, J. Diosa, and R. Vargas, “Dependence of the mechanical and electrical properties on the acid content in PVA + H3PO2 + H2O membranes,” Rev. Mex. Física, vol. 60, pp. 249–252, 2014.
[13] C. Yang, “Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC,” Electrochimical Acta, vol. 288, pp. 51–60, 2007.
[14] M. Fernández, J. Diosa, R. Vargas, J. Guerra, C. Villaquiran, D. García, and J. Eiras, “Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes,” Phys. Stat. Sol. (c), vol. 4, pp. 4075–4080, 2007.
[15] P. Ahmadpoor, A. Nateri, and V. Motaghitalab, “The Optical Properties of PVA/TiO2 Composite Nanofibers,” J. Applied Polymer Science, vol. 130, pp.78–85, 2013.
[16] J. Ahmad, K. Deshmukh, M. Habib, and M. Hägg, “Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes,” J. Sci. Eng., vol. 39, pp. 6805–6814, 2014.
[17] A. Jonscher, Universal relaxation law: a sequel to Dielectric relaxation in solids. Chelsea Dielectrics Press, 1996.
[18] G. Casalbore-Miceli, M. Yang, M. Camaioni, C.-M. Mari, Y. Li, M. Sun, and H. Ling, “Investigations on the ion transport mechanism in conducting polymer films,” Sol. Stat. Ionics, vol. 131, pp. 6 805–6 814, 2000.