On a minimal operator ideals defined by means of interpolation spaces

Main Article Content

María Eugenia Puerta Yepes
Gabriel Ignacio Loaiza Ossa

Keywords

tensor products, operators, ideals, interpolation spaces.

Abstract

In this paper we introduce a tensonorm defined by interpolation spaces of p spaces and characterize the minimal operator associated in the sense of [1].

Downloads

Download data is not yet available.
Abstract 635 | PDF (Español) Downloads 252

References

[1] Andreas Defant and K. Floret. Tensor norms and operator ideals, ISBN 0444890912. North Holland, 1992.

[2] U. Matter. Absolutely continuous operators and super–reflexibility. Mathematische Nachrichten, ISSN 0025–584X, 130, 193–216 (1987).

[3] U. Matter. Factoring through interpolation spaces and super–reflexive Banach spaces. Roumaine Math. Pures Appl., ISSN 0035–3965, 34, 147–156 (1989).

[4] Gilles Pisier. Factorization of linear operators and geometry of Banach spaces, ISBN 0–8218–0710–2. AMS, Conference Board of the Math. Sciences. Regional Conference Series in Math. 60. Providence, Rhode Island, 1987.

[5] J. A. López Molina and E. A. Sánchez Pérez. On operator ideals related to (p; σ)– absolutely continuous operators. Studia Mathematica, ISSN 0039–3223, 138(1), 25–40 (2000).

[6] G. Arango, J. A. López Molina and M. J. Rivera. Characterization of g∞, σ– integral operators. Mathematische Nachrichten, ISSN 0025–584X, 9, 278(9), 995– 1014 (2005).

[7] J¨oran Bergh and J¨orgen Lofstrom. Interpolation spaces, an introduction, ISBN 3540078754. Springer Verlag, Berlin, New York, 1976.

[8] Ju A. Brudyi and N. Ja Krugljak. Interpolation Functors and Interpolation spaces, ISBN 0444880011. 1 North Holland, Amsterdam, 1991.

[9] Joram Lindenstrauss and Lior Tzafriri. Classical Banach spaces I and II , ISBN 3540606289. Springer Verlag, Berlin, Heildelberg, New York, 1977 y 1979.

[10] Helmut H. Schaeffer. Banach lattices and positive operators, ISBN–10 3540069364. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 1974.

[11] PeterMeyer–Nieberg. Banach Lattices, ISBN 3540542019. Springer–Verlag, Berlin and Heildelberg, New York, 1991.

[12] H. E. Lacey. The Isometric Theory of Classical Banach Spaces, ISBN 9780387065625. Springer–Verlag New York, 1974.

[13] Paul Krée. Interpolation d’espaces vectoriels qui ne sont ni normés ni complets. Applications. Annales de L’Institut Fourier, ISSN (électronique) 1777–5310, 17(2), 137–174 (1967).

Most read articles by the same author(s)