On a minimal operator ideals defined by means of interpolation spaces
Main Article Content
Keywords
tensor products, operators, ideals, interpolation spaces.
Abstract
In this paper we introduce a tensonorm defined by interpolation spaces of p spaces and characterize the minimal operator associated in the sense of [1].
Downloads
Download data is not yet available.
References
[1] Andreas Defant and K. Floret. Tensor norms and operator ideals, ISBN 0444890912. North Holland, 1992.
[2] U. Matter. Absolutely continuous operators and super–reflexibility. Mathematische Nachrichten, ISSN 0025–584X, 130, 193–216 (1987).
[3] U. Matter. Factoring through interpolation spaces and super–reflexive Banach spaces. Roumaine Math. Pures Appl., ISSN 0035–3965, 34, 147–156 (1989).
[4] Gilles Pisier. Factorization of linear operators and geometry of Banach spaces, ISBN 0–8218–0710–2. AMS, Conference Board of the Math. Sciences. Regional Conference Series in Math. 60. Providence, Rhode Island, 1987.
[5] J. A. López Molina and E. A. Sánchez Pérez. On operator ideals related to (p; σ)– absolutely continuous operators. Studia Mathematica, ISSN 0039–3223, 138(1), 25–40 (2000).
[6] G. Arango, J. A. López Molina and M. J. Rivera. Characterization of g∞, σ– integral operators. Mathematische Nachrichten, ISSN 0025–584X, 9, 278(9), 995– 1014 (2005).
[7] J¨oran Bergh and J¨orgen Lofstrom. Interpolation spaces, an introduction, ISBN 3540078754. Springer Verlag, Berlin, New York, 1976.
[8] Ju A. Brudyi and N. Ja Krugljak. Interpolation Functors and Interpolation spaces, ISBN 0444880011. 1 North Holland, Amsterdam, 1991.
[9] Joram Lindenstrauss and Lior Tzafriri. Classical Banach spaces I and II , ISBN 3540606289. Springer Verlag, Berlin, Heildelberg, New York, 1977 y 1979.
[10] Helmut H. Schaeffer. Banach lattices and positive operators, ISBN–10 3540069364. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 1974.
[11] PeterMeyer–Nieberg. Banach Lattices, ISBN 3540542019. Springer–Verlag, Berlin and Heildelberg, New York, 1991.
[12] H. E. Lacey. The Isometric Theory of Classical Banach Spaces, ISBN 9780387065625. Springer–Verlag New York, 1974.
[13] Paul Krée. Interpolation d’espaces vectoriels qui ne sont ni normés ni complets. Applications. Annales de L’Institut Fourier, ISSN (électronique) 1777–5310, 17(2), 137–174 (1967).
[2] U. Matter. Absolutely continuous operators and super–reflexibility. Mathematische Nachrichten, ISSN 0025–584X, 130, 193–216 (1987).
[3] U. Matter. Factoring through interpolation spaces and super–reflexive Banach spaces. Roumaine Math. Pures Appl., ISSN 0035–3965, 34, 147–156 (1989).
[4] Gilles Pisier. Factorization of linear operators and geometry of Banach spaces, ISBN 0–8218–0710–2. AMS, Conference Board of the Math. Sciences. Regional Conference Series in Math. 60. Providence, Rhode Island, 1987.
[5] J. A. López Molina and E. A. Sánchez Pérez. On operator ideals related to (p; σ)– absolutely continuous operators. Studia Mathematica, ISSN 0039–3223, 138(1), 25–40 (2000).
[6] G. Arango, J. A. López Molina and M. J. Rivera. Characterization of g∞, σ– integral operators. Mathematische Nachrichten, ISSN 0025–584X, 9, 278(9), 995– 1014 (2005).
[7] J¨oran Bergh and J¨orgen Lofstrom. Interpolation spaces, an introduction, ISBN 3540078754. Springer Verlag, Berlin, New York, 1976.
[8] Ju A. Brudyi and N. Ja Krugljak. Interpolation Functors and Interpolation spaces, ISBN 0444880011. 1 North Holland, Amsterdam, 1991.
[9] Joram Lindenstrauss and Lior Tzafriri. Classical Banach spaces I and II , ISBN 3540606289. Springer Verlag, Berlin, Heildelberg, New York, 1977 y 1979.
[10] Helmut H. Schaeffer. Banach lattices and positive operators, ISBN–10 3540069364. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 1974.
[11] PeterMeyer–Nieberg. Banach Lattices, ISBN 3540542019. Springer–Verlag, Berlin and Heildelberg, New York, 1991.
[12] H. E. Lacey. The Isometric Theory of Classical Banach Spaces, ISBN 9780387065625. Springer–Verlag New York, 1974.
[13] Paul Krée. Interpolation d’espaces vectoriels qui ne sont ni normés ni complets. Applications. Annales de L’Institut Fourier, ISSN (électronique) 1777–5310, 17(2), 137–174 (1967).