Over the non-extensivity parameter for some superadditives systems

Main Article Content

R. Borja–Tamayo
C. Cartagena Marín
Gabriel Ignacio Loaiza Ossa
G. Molina Vélez
María Eugenia Puerta Yepes


entropy, thermostatistics non expansive, super–additives systems


In this paper one introduces a bijective relation between the non–extensivity parameter q and the stationary probability density function f corresponding to an observable u for some super–additive systems for which the notion of Tsallis entropy applies. This relation is given as a comparison of linking functions characterizing memoryless of certain random variables associated to parameter q and the stationary density f. Then these results are used to formulate a method for approximating the parameter q based on an estimation of f, provided that the effective energy associated to u equals the effective kinetic energy.

PACS: 05.20.Jj , 05.70.Ce

MSC: 46N55, 28D20


Download data is not yet available.
Abstract 615 | PDF (Español) Downloads 227


[1] C. Tsallis. Possible generalization of Boltzmann–Gibbs statistics. Journal of Statistical Physics, ISSN 0022–4715, 52(1 y 2), 478–487 (1988).

[2] C. Tsallis. Nonextensive entropy: Interdisciplinary applications, ISBN 0195159772, Gell–Mann, M.(Editores), 2004.

[3] M. Ghitany. Some remarks on a characterization of the generalized log-logistic distribution. Environmetrics, ISSN 1180–4009, 7(3), 277–281 (1996).

[4] C. Tsallis, F. Baldovin, R. Cerbino and P. Pierobon. Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons and Fractals, ISSN 0960–0779, 13(3), 371–391 (2002).

[5] C. Beck. Application of generalized thermostatistics to fully developed turbulence. Physica A: Statistical Mechanics and its Applications, ISSN 0378–4371, 277(1), 115–123 (2000).

[6] C. Tsallis, R. Mendes and A. Plastino. The role of constraints within generalized nonextensive statistics. Physica A: Statistical Mechanics and its Applications, ISSN 0378–4371, 261(3), 534–554 (1998).

[7] G. Ferri, S. Martínez y A. Plastino. Sobre el procedimiento de normalización en la termoestadística de Tsallis. Anales AFA, ISSN 0327–358X, 16, 24–29 (2004).

[8] L. Moyano. Mecˆanica estatística n˜ao-extensiva em sistemas complexos: fundamentos dinˆamicos e aplica¸c˜oes, Tese de Dutorado, Centro Brasilero de Pesquisas Físicas, Rio de Janeiro (2006), http://cbpfindex.cbpf.br/publication_ pdfs/tese_moyano.2006_05_02_04_01_11.pdf.

[9] J. Naudts. Deformed exponentials and logarithms in generalized thermostatistics. Physica A: Statistical Mechanics and its Applications, ISSN 0378–4371, 316(1), 323–334 (2002).

[10] E. Pinheiro Borges. Manifesta¸c˜oes dinˆamicas e termodinˆamicas de sistemas n˜ao- extensivos, Tese de Dutorado, Centro Brasileiro de Pesquisas Físicas. Rio de Janeiro (2004), http://www2.ufba.br/ ernesto/files/epb-tese.pdf.

[11] E. Daniels, C. Beck and E. Bodenschatz. Defect turbulence and generalized statistical mechanics. Physica D: Nonlinear Phenomena, ISSN 0167–2789, 193(1–4), 208–217 (2004).

Most read articles by the same author(s)