Sobre el parámetro de no extensividad para algunos sistemas super-aditivos

Main Article Content

R. Borja–Tamayo
C. Cartagena Marín
Gabriel Ignacio Loaiza Ossa
G. Molina Vélez
María Eugenia Puerta Yepes

Keywords

entropía, termoestadística no extensiva, sistemas super–aditivos

Resumen

Este artículo propone una relación biunívoca entre el parámetro de no extensividad q y la función de densidad de probabilidad estacionaria f correspondientes a un observable u para algunos sistemas super–aditivos en los que la Entropía de Tsallis sea aplicable. Dicha relación se da en términos de comparación entre funciones de enlace que caracterizan la falta de memoria de ciertas variables aleatorias asociadas al parámetro q y a la densidad estacionaria f. Finalmente, a partir de los resultados anteriores, se propone un método que permite aproximar el parámetro q, mediante una estimación de f, cuando la energía efectiva asociada a u sea la energía cinética efectiva.

PACS: 05.20.Jj , 05.70.Ce

MSC: 46N55, 28D20

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 650 | PDF Downloads 244

Referencias

[1] C. Tsallis. Possible generalization of Boltzmann–Gibbs statistics. Journal of Statistical Physics, ISSN 0022–4715, 52(1 y 2), 478–487 (1988).

[2] C. Tsallis. Nonextensive entropy: Interdisciplinary applications, ISBN 0195159772, Gell–Mann, M.(Editores), 2004.

[3] M. Ghitany. Some remarks on a characterization of the generalized log-logistic distribution. Environmetrics, ISSN 1180–4009, 7(3), 277–281 (1996).

[4] C. Tsallis, F. Baldovin, R. Cerbino and P. Pierobon. Entropic nonextensivity: a possible measure of complexity. Chaos, Solitons and Fractals, ISSN 0960–0779, 13(3), 371–391 (2002).

[5] C. Beck. Application of generalized thermostatistics to fully developed turbulence. Physica A: Statistical Mechanics and its Applications, ISSN 0378–4371, 277(1), 115–123 (2000).

[6] C. Tsallis, R. Mendes and A. Plastino. The role of constraints within generalized nonextensive statistics. Physica A: Statistical Mechanics and its Applications, ISSN 0378–4371, 261(3), 534–554 (1998).

[7] G. Ferri, S. Martínez y A. Plastino. Sobre el procedimiento de normalización en la termoestadística de Tsallis. Anales AFA, ISSN 0327–358X, 16, 24–29 (2004).

[8] L. Moyano. Mecˆanica estatística n˜ao-extensiva em sistemas complexos: fundamentos dinˆamicos e aplica¸c˜oes, Tese de Dutorado, Centro Brasilero de Pesquisas Físicas, Rio de Janeiro (2006), http://cbpfindex.cbpf.br/publication_ pdfs/tese_moyano.2006_05_02_04_01_11.pdf.

[9] J. Naudts. Deformed exponentials and logarithms in generalized thermostatistics. Physica A: Statistical Mechanics and its Applications, ISSN 0378–4371, 316(1), 323–334 (2002).

[10] E. Pinheiro Borges. Manifesta¸c˜oes dinˆamicas e termodinˆamicas de sistemas n˜ao- extensivos, Tese de Dutorado, Centro Brasileiro de Pesquisas Físicas. Rio de Janeiro (2004), http://www2.ufba.br/ ernesto/files/epb-tese.pdf.

[11] E. Daniels, C. Beck and E. Bodenschatz. Defect turbulence and generalized statistical mechanics. Physica D: Nonlinear Phenomena, ISSN 0167–2789, 193(1–4), 208–217 (2004).