Sobre la distancia mínima de códigos AG unipuntuales castillo
Main Article Content
Keywords
Códigos correctores de errores, códigos AG, distancia mínima, códigos Hermitianos.
Resumen
Presentamos una caracterización de la cota inferior d* para la distancia mínima de códigos algebraico-geométricos unipuntuales sobre curvas castillo. Calculamos explícitamente esta cota en el caso de un semigrupo de Weierstrass generado por dos elementos consecutivos. En particular, obtenemos una caracterización más simple del valor exacto de la distancia mínima para códigos Hermitianos.
MSC: 94.B27; 94.B65
Descargas
Referencias
[2] O. Geil, “On codes from norm-trace curves”, Finite Fields and Their Applications,vol. 9, n.o 3, pp. 351-371, jul. 2003. Referenciado en 241
[3] F. Torres, D. Ruano, C. Munuera, O. Geil, “On the order bounds for one-point AGcodes”, Advances in Mathematics of Communications, vol. 5, n.o 3, pp. 489-504,ago. 2011. Referenciado en 241, 243
[4] O. Geil, R. Matsumoto, “Bounding the number of -rational places in algebraicfunction fields using Weierstrass semigroups”, Journal of Pure and Applied Algebra,vol. 213, n.o 6, pp. 1152-1156, jun. 2009. Referenciado en 241, 242
[5] V. Goppa, “Codes on algebraic curves”, Sov. Math.-Dokl., vol. 24, pp. 170-172,1981. Referenciado en 239
[6] J. Hansen, “Deligne-Lusztig varieties and group codes”, in Coding Theory and AlgebraicGeometry, vol. 1518, H. Stichtenoth y M. Tsfasman, Eds. Springer Berlin/ Heidelberg, 1992, pp. 63-81. Referenciado en 241
[7] J. Pedersen, J. Hansen, “Automorphism groups of Ree type Deligne-Lusztig curvesand function fields.”, J. reine angew. Math. , n.o 440, pp. 99-109, 1993.Referenciado en 241
[8] J. Hansen, H. Stichtenoth, “Group codes on certain algebraic curves with manyrational points”, Applicable Algebra in Engineering, Communication and Computing,vol. 1, n.o 1, pp. 67-77, 1990. Referenciado en 241
[9] T. Høholdt, J. van Lint, R. Pellikaan, “Algebraic-geometry codes”, in Handbookof Coding Theory, Volume 1: Part 1: Algebraic Coding, V. Pless y W. . Huffman,Eds. Amsterdam: Elsevier, 1998, pp. 871-961. Referenciado en 242, 251
[10] J. Lewittes, “Places of degree one in function fields over finite fields”, Journal ofPure and Applied Algebra, vol. 69, n.o 2, pp. 177-183, dic. 1990.Referenciado en 241, 242
[11] J. van Lint, Introduction to Coding Theory, 2.a ed. Springer-Verlag, 1992. Referenciadoen 239
[12] J. van Lint y G. V. D. Geer, Introduction to coding theory and algebraic geometry.Birkhauser Verlag, 1988. Referenciado en 239
[13] “MinT”, Online database for optimal parameters of (t, m, s)-nets,(t, s)-secuences, ortogonal arrays and linear codes.
[Online]. Available:http://mint.sbg.ac.at/. Referenciado en 251
[14] C. Munuera, A. Sepúlveda, F. Torres, “Algebraic Geometry Codes from CastleCurves”, in Coding Theory and Applications, vol. 5228, Á. Barbero, Ed. Berlin,Heidelberg: Springer Berlin Heidelberg, 2008, pp. 117-127.Referenciado en 241, 242
[15] C. Shannon, “A mathematical theory of communication”, Bell System TechnicalJournal, vol. 27, pp. 656-715, 1948. Referenciado en 238
[16] H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 2009.Referenciado en 240, 245
[17] M. Tsfasman, S. Vladutx, T. Zink, “Modular curves, Shimura curves, and Goppacodes, better than Varshamov-Gilbert bound”, Mathematische Nachrichten, vol.109, n.o 1, pp. 21-28, 1982. Referenciado en 240
[18] K. Yang, P. Kumar, “On the true minimum distance of Hermitian codes”, in CodingTheory and Algebraic Geometry, vol. 1518, H. Stichtenoth y M. A. Tsfasman,Eds. Springer Berlin Heidelberg, pp. 99-107. Referenciado en 250, 251