Modelos relativistas de discos delgados inmersos en un espacio-tiempo tipo Robertson-Walker
Main Article Content
Keywords
Relatividad general, discos delgados, soluciones exactas, métrica de Robertson-Walker.
Resumen
Usando el método de “desplazamiento, corte y reflexión” se construyen algunos modelos relativistas exactas de soluciones que representan discos delgados de extensión infinita, dependientes del tiempo y hechos de un fluido perfecto, basados en la métrica de Robertson-Walker. Se presentan dos familias simples de modelos de discos basados sobre el espacio tiempo de Robertson-Walker que admiten colineaciones de Ricci y de materia. Se obtienen modelos de discos que satisfacen todas las condiciones de energía.
PACS: 04.40Nr
MSC: 83C22
Descargas
Referencias
[2] T. Morgan and L. Morgan, “The Gravitacional Field of a Disk,” Phys. Rev., vol. 183, pp. 1097-1101, Apr. 1969.
[3] L. Morgan and T. Morgan, “Gravitational Field of Shells and Disks in General Relativity”, Phys. Rev. D, vol. 2, pp. 2756 - 2761, Apr. 1970.
[4] G. A. Gonzalez and P. S. Letelier, “Relativistic static thin discs with radial stress support,” Class. Quantum Grav., vol. 16, pp. 479-494, Apr. 1999.
[5] J. P. S. Lemos and P. S. Letelier, “Superposition of Morgan and Morgan discs with a Schwarzschild black hole,” Class. Quantum Grav., vol. 10, pp. L75 - L78, Apr. 1993.
[6] J. Bicák, D. Lynden-Bell, and J. Katz, “Relativistic disks as sources of static vacuum spacetimes,” Phys. Rev. D, vol. 47, pp. 4334-4343, Apr. 2003.
[7] J. Bicák and T. Ledvinka, “Relativistic disks as sources of the Kerr metric,” Phys. Rev. Lett., vol. 71, pp. 1669-1672, Apr. 1993.
[8] G. A. Gonzalez and P. S. Letelier, “Rotating relativistic thin disks,” Phys. Rev. D, vol. 62, 064025, pp. 1 - 8, Apr. 2000.
[9] T. Ledvinka, J. Bicák, and M. .Zofka, “Relativistic discs as sources of Kerr-Newman fields,” in Proc. 1999 of 8th Marcel- Grossmann Meeting in General Relativity, edited by T. Piran, World Scientific, Singapore, pp. 339-341.
[10] C. H. García-Duque and G. García-Reyes, “General magnetized Weyl solutions: disks and motion of charged particles,” Gen. Relativ. Gravit., vol. 43, pp. 3001-3032, Apr. 2011.
[11] J. Katz, J. Bicák, D. Lynden-Bell, “Disc sources for conformastationary metrics,” Class. Quantum Grav., vol. 16, pp. 4023- 4034 , Apr. 1999.
[12] J. L. Synge, Relativity: The General Theory. Amsterdam: North-Holland publishing company, 1966.
[13] C. Klein, “Exact relativistic treatment of stationary blackholedisk systems,” Phys. Rev. D, vol. 68, 027501, pp. 1-4, Apr. 2003.
[14] C. Klein, “On explicit solutions to the stationary axisymmetric Einstein-Maxwell equations describing dust disks,” Annalen der Physik, vol. 12, pp. 599-639, Apr. 2003.
[15] J. Binney and S. Tremaine, Galactic Dynamics. Princeton, New Jersey: Princeton University Press, 1987, pp. 43.
[16] P. S. Apostolopoulos and M. Tsamparlis, “Geometric Equations of State in Friedmann-Lemaître Universes Admitting Matter and Ricci Collineations,” Gen. Rel. Grav. Vol. 36, pp. 277-292, Apr. 2004.
[17] H. Stephani, D. Kramer, M. McCallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein’s Field Equations. England: Cambridge University Press, 2003, pp. 211.
[18] Ray d’Inverno, Introducing Einstein’s Relativity: Clarendon Press, Oxford, 1998, pp.. 313-314.
[19] G. García-Reyes and G. A. González, “Electrovacuum Static Counterrotating Relativistic Dust Disks,” Phys. Rev. D, vol. 70, 104005, pp.1-6, Apr. 2004.