Integración de fuentes no convencionales de energía renovable al mercado eléctrico y su impacto sobre el precio

Main Article Content

Santiago Hoyos http://orcid.org/0000-0002-7761-4751
Carlos Jaime Franco http://orcid.org/0000-0002-7750-857X
Isaac Dyner

Keywords

FNCER, mecanismos de integración, mercados de electricidad, modelamiento de sistemas energéticos

Resumen

Las fuentes no convencionales de energía renovable (FNCER) son fuentes de energía consideradas como una alternativa limpia para el suministro de electricidad frente a generación eléctrica a base de combustible fósiles. Además, son un medio por el cual se reduce el nivel de concentración en el mercado y la participación de la demanda se pueden dar. En este artículo se presenta diferentes mecanismos de integración de estas fuentes en el mercado, y se analiza su efecto sobre el precio de la electricidad en Colombia. Bajo las condiciones de simulación definidas, los resultados indican que una participación del 20% de las FNCER en el cubrimiento de la demanda de forma distribuida genera una reducción del 22% en el precio de la electricidad en el largo plazo

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1275 | PDF Downloads 855

Referencias

[1] International Renewable Agency (IRENA),“International Renewable Energy Agency,” Smart Grids and Renewables. A Guide for Effective Deployment. Working Paper, 2013.

[2] European Commission (EC), “Energía 2020 Estrategia para una energÃa competitiva, sostenible y segura,” Com, no. 639, pp. 1–9, 2010.

[3] European Commission (EC), “Quartely Report on European Electricity Markets,” Markets Observatory For Energy. DG Energy, vol. 7, pp. 1–9, 2015.

[4] North American Electric Reliability Corporation (NERC), 2016. [Online]. Available: http://www.nerc.com/Pages/default.aspx

[5] North European Power Perpectives (NEPP), “The Future Power Market Design. Ten Statements About,” 2016. [Online]. Available: http://www. nepp.se/

[6] CIER, “Marco Legal y Regulatorio para las Energías Renovables No Convencionales,” Comisión de Integración Energética Regional (CIER), no. C, 2009.

[7] International Renewable Agency (IRENA),“Energías Renovables en América Latina 2015,” Sumario de Políticas, pp. 12–19, 2009.

[8] García, H and Corredor, A and Calderón, L and Gómez, M, “Análisis costo beneficio de energías renovables no convencionales en Colombia,” Doc. Prep. para WWF, p. 90, 2013.

[9] Comisión de Regulación de Energía y Gas (CREG), “Alternativa para la Integración de Fuentes No Convencionales de Energía Renovable (FNCER) al Parque Generador,” Documento CREG-161 de 26 de diciembre de 2016, 2016.

[10] Ministerio de Minas y Energía y UPME, “Integración de las energías renovables no convencionales en Colombia,” 2015.

[11] NARUC, “Rate Design and Compensation: mechanisms and methodologies. Distributed Energy Resource Rate Design and Compensation. A manual prepared by the National Association of Regulatory Utility Commissioners (NARUC) staff subcommittee on Rate Design,” no. November, p. 180, 2016.

[12] NREL, “Compensation for Distributed Solar : A Survey of Options to Preserve Stakeholder Value,” no. September, 2015.

[13] Ministerio de Industria Energía y Turismo de España, “Real Decreto 900/2015, de 9 de octubre, por el que se regulan las condiciones administrativas, técnicas y económicas de las modalidades de suministro de energía eléctrica con autoconsumo y de producción con autoconsumo.” Boe, pp. 27548–27562, 2015. [Online]. Available: http://www.boe.es

[14] J. P. Avalos, R. M. Mellado, and H. Rudnick, “Estructura y funciones de un operador independiente,” pp. 51–61, 2012. [Online]. Available: http://web.ing.puc.cl/power/alumno12/operindep/2012.05. 30OperadoresSistema.pdf

[15] R. Raineri, I. Dyner, J. Goñi, N. Castro, Y. Olaya, and C. Franco, Latin America Energy Integration. Evolution of Global Electricity Markets. New paradigms, new Challenges, new approaches, San Francisco, CA, USA, 2013.

[16] A. Ford, “System Dynamics and the Electric Power Industry,” System Dynamics Review, vol. 13, no. 1, pp. 57–85

[17] A. Ford, “Cycles in competitive electricity markets: A simulation study of the western United States,” Energy Policy, vol. 27, no. 11, pp. 637–658, 1999.

[18] J. W. Forrester, “System dynamics, systems thinking, and soft OR,” System Dynamics Review, vol. 10, no. 2-3, pp. 245–256, 1994.

[19] I. Dyner, E. Larsen, and K. Vlahos, Complementary modeling approaches for analysing several effects of privatization on electricity investment. Systems modelling policy, 1997.

[20] I. Dyner and D. Bunn, A systems simulation platform to support energy policy in Colombia. Systems modelling policy, 1997.

[21] J. Sterman, Buisness Dynamics: System thinking and modeling for a complex world. McGraw Hill, 2000.

[22] I. Dyner and E. Larsen, “From planning to strategy in the electricity industry,” Energy Policy, vol. 29, no. 13, pp. 245–256, 2001.

[23] C. J. Franco and I. Dyner, “Assessing the impact of energization in the Colombian Southwest: a case of application using System Dynamics,” Proceedings of the 24th International Conference of the System Dynamics Society, p. 65, 2006

[24] F. Olsina, F. Garcés, and H. J. Haubrich, “Modeling long-term dynamics of electricity markets,” Energy Policy, vol. 34, no. 12, pp. 1411–1433, 2006.

[25] D. Finon and V. Pignon, “Electricity and Long Term Capacity: The Quest for Regulatory Mechanism Compatible With Electricity Market,” Utilities Policy, no. 18, pp. 143–148, 2008.

[26] C. Franco, I. Dyner, and S. Hoyos, “Contribución De La Energía Al Desarrollo De Comunidades Aisladas No Interconectadas : Un Contribution of the Energy At Development of Islated Communities in Not Interconnected Zones : a Case of Application of the Systems Dynamics and Sustainable Livelihoo,” Dyna, vol. 75, no. 154, pp. 199–214, 2008. [Online]. Available: http://www.redalyc.org/articulo.oa?id=49615420

[27] P. Ochoa and A. Van Ackere, “Policy changes and the dynamics of capacity expansion in the Swiss electricity market,” Energy Policy, 2009.

[28] J. M. Redondo Ortegón, “Modelado de Mercados de Electricidad,” p. 117, 2012. [Online]. Available: http://www.bdigital.unal.edu.co/10220/

[29] J. Valencia, G. Olivard, C. Franco, and I. Dyner, Qualitative Analysis of climatic seasonality Effects in a model of National Electricity Market, 121st ed. Springer International Publishing Switzerland, 2015.

[30] C. Ochoa, I. Dyner, and C. Franco, “Simulating power integration in Latin America to Assess challenges, opportunities and threats,” Energy Policy, vol. 61, no. October, pp. 143–148, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0301421513006721

[31] C. Ochoa and A. Van Ackere, “Does size matter? Simulating electricity market coupling between Colombia and Ecuador,” Renewable and Sustainable Energy Reviews, vol. 50, no. October, pp. 1108–1124, 2015.

[32] D. L. Cadavid Higuita, “Aproximación metodológica al análisis de la difusión de innovaciones en productos que utilizan tecnologías limpias considerando elecciones individuales de adopción,” p. 347, 2015. [Online]. Available: http://www.bdigital.unal.edu.co/47098/

[33] O. Ojeda, F. Olsina, and Garcés, “Simulation on the long - term dynamic of a market - based transmission interconnection,” Energy Policy, 2009.

[34] M. Castañeda, C. Franco, and I. Dyner, “The Effects of descarbonisation policies on the electricity sector,” IEEE Xplore. IEEE Latinamerican Transacction, vol. 12, no. 5, 2015.

[35] W. W. Hogan, “Capacity Markets: Gauging Their Real Impact on Resource Development and Reliability,” in EUCI Conference, Cambridge, MA, 2015.

[36] T. Rintam, “Impact of renewable energy on electricity prices - comparative analysis of Denmark and Germany,” no. March, 2013.

[37] J. Valencia-Calvo, C. J. Franco-Cardona, G. Olivar-Tost, and I. DynerRezonzew, “Enfoque metodológico para el estudio y representación de comportamientos complejos en mercados de electricidad,” Ingeniería y Ciencia, vol. 12, no. 24, pp. 195–220, 2016. [Online]. Available: http:// publicaciones.eafit.edu.co/index.php/ingciencia/article/view/3355

[38] A. García and L. Arbeláes, “Market Power Analysis for the Colombia Electricity Market,” Energy Economics, 2002.

[39] P. Sioshansi, Introduction. Evolution of Global Electricity Markets. New paradigms, new Challenges, new approaches. San Francisco. CA, USA: Menlo Energy Economics, 2002.

[40] Unidad de Planeación Minero Energética (UPME), “Plan Energetico Nacional Colombia: Ideario Energético 2050,” Unidad de Planeación Minero Energética, Republica de Colombia, p. 184, 2015. [Online]. Available: http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdf

[41] Unidad de Planeación Minero Energética (UPME), “Plan de Expansión de Referencia Generación-Transmisión 2015-2029,” Ministerio de Minas y Energía, p. 616, 2015. [Online]. Available: http://www.upme.gov.co/Docs/Plan_Expansion/2016/Plan_Expansion_ GT_2015-2029/Plan_GT_2015-2029_VF_22-12-2015.pdf

[42] XM, “Operador del Sistema Eléctrico colombiano. Datos del Sistema Eléctrico,” 2015.

[43] IPCC, Fuentes de energía renovables y mitigación del cambio climatico, 2011. [Online]. Available: https://www.ipcc.ch/pdf/special-reports/srren/ srren_report_es.pdf

Artículos más leídos del mismo autor/a