Métodos numéricos acoplados con la extrapolación de Richardson para el cálculo de sistemas de potencia transitorios

Main Article Content

Whady Felipe Florez http://orcid.org/0000-0003-3977-0371
Jorge W Gonzalez
Alan F Hill
Gabriel J Lopez https://orcid.org/0000-0002-9453-4278
Juan D Lopez http://orcid.org/0000-0002-4213-6825

Keywords

Estabilidad transitoria de sistemas de potencia, extrapolación de Richardson, ecuaciones dinámicas

Resumen

La solución numérica de problemas de estabilidad transitoria es un elemento clave para la operacion de sistemas eléctricos. El modelo clásico para sistemas multi-máquina se define como un conjunto de ecuaciones diferenciales no lineales para la velocidad del rotor y el ángulo del generador para
cada máquina eléctrica, este modelo matemático se conoce generalmente como las ecuaciones de oscilación. Este artículo presenta la forma de utilizar la extrapolación directa de Richardson de varios órdenes para la
solución numérica de las ecuaciones de oscilación y la compara con otros métodos implícitos y explícitos de uso común como los métodos Runge-Kutta, Trapezoidal, Shampine y Radau. Se presenta un estudio numérico sobre un sistema simple de tres máquinas para ilustrar el desempeño y la implementación algebráica de la extrapolación de Richardson. El orden de exactitud de cualquier solución numérica puede aumentarse cuando se utiliza la extrapolación de Richardson. Se proporciona un ejemplo numérico para una red eléctrica que consta de tres máquinas y nueve buses que sufren una perturbación. Se demuestra que en este caso la extrapolación de Richardson aumenta efectivamente el orden de exactitud de los métodos explícitos haciéndolos competitivos con los métodos implícitos. 

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1270 | PDF (English) Downloads 690

Referencias

[1] M. Watanabe, Y. Mitani, and K. Tsuji, “A numerical method to evaluate power system global stability determined by limit cycle,” IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1925–1934, Nov 2004.

[2] J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics and control engineering education and research,” IEEE Transactions on Power Systems, vol. 7, no. 4, pp. 1559–1564, Nov 1992.

[3] F. Milano, “Semi-implicit formulation of differential-algebraic equations for transient stability analysis,” IEEE Transactions on Power Systems, vol. PP, no. 99, pp. 1–10, 2016.

[4] L. Shampine, “Solving 0 = f(t, y(t), y(t)) in matlab,” Numerical Mathematics, vol. 10, pp. 291 – 310, 2002.

[5] E. Hairer and G. Wanner, “Stiff differential equations solved by radau methods,” Journal of Computational and Applied Mathematics, vol. 111, no. 1002, pp. 93 – 111, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S037704279900134X67

[6] A. Aubry and P. Chartier, “On the structure of errors for radau ia methods applied to index-2 daes,” Applied Numerical Mathematics, vol. 22, no. 1, pp. 23 – 34, 1996. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S016892749600023267

[7] K. S. Shetye, T. J. Overbye, S. Mohapatra, R. Xu, J. F. Gronquist, and T. L. Doern, “Systematic determination of discrepancies across transient stability software packages,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 432–441, Jan 2016.

[8] A. Singh and S. Parida, “A multiple strategic evaluation for fault detection in electrical power system,” International Journal of Electrical Power & Energy Systems, vol. 48, pp. 21 – 30, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0142061512006862

[9] A. Paul M. Anderson, Power System Control and Stability. Wiley, 2002.

[10] W. John J. Grainger, Power system analysis. McGraw-Hill, 1994.

[11] P. K. Iyambo and R. Tzoneva, “Transient stability analysis of the ieee 14-bus electric power system,” in AFRICON 2007, Sept 2007, pp. 1–9.

[12] A. Farraj, E. Hammad, and D. Kundur, “A cyber-physical control framework for transient stability in smart grids,” IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1–10, 2016.

[13] C. Rehtanz and X. Guillaud, “Real-time and co-simulations for the development of power system monitoring, control and protection,” in 2016 Power Systems Computation Conference (PSCC), June 2016, pp. 1–20.

[14] S. Teleke, “Modeling and comparison of synchronous condenser and svc,” Master’s thesis, Chalmers University Of Technology, 2006.

[15] Z. Zlatev, K. Georgiev, and I. Dimov, “Studying absolute stability properties of the richardson extrapolation combined with explicit runge kutta methods,” Computers & Mathematics with Applications, vol. 67, no. 12, pp. 2294 – 2307, 2014, efficient Algorithms for Large Scale Scientific Computations. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S089812211400096067

[16] Y. C and H. Dag, “Detailed model for power system transient stability analysis,” Journal of Engineering & Computer Science IJECS-IJENS, vol. 13, no. 2, pp. 1 – 5, 2012.

[17] D. XIE, “A new numerical algorithm for efficiently implementing implicit runge-kutta methods,” Department of Mathematical Sciences. University of Wisconsin, Milwaukee, Wisconsin, USA, pp. 1 – 17, 2009.

[18] R. Zarate-Minano, T. V. Cutsem, F. Milano, and A. J. Conejo, “Securing transient stability using time-domain simulations within an optimal power flow,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 243–253, Feb 2010.

[19] S. Sharma, S. Kulkarni, A. Maksud, S. R. Wagh, and N. M. Singh, “Transient stability assessment and synchronization of multimachine power system using kuramoto model,” in North American Power Symposium (NAPS), 2013, Sept 2013, pp. 1–6.

[20] S. Ekinci and A. Demiroren, “Transient stability simulation of multi-machine power systems using simulink,” Electrical & Electronics Engineering, vol. 15, no. 2, pp. 1 – 8, 2015.

[21] Q. M. R. M. A. Salam, M. A. Rashid and M. Rizon, “Transient stability analysis of a three-machine nine bus power system network,” Engineering Letters, vol. 22, no. 1, pp. 1 – 7, 2014.

[22] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to electrical networks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 1, pp. 150–163, Jan 2013.

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. New York, NY, USA: Cambridge University Press, 2007.

[24] MATLAB, version R2015. Natick, Massachusetts: The MathWorks Inc., 2015.

[25] J. C. Butcher, “Implicit runge-kutta processes,” Mathematics of Computation, vol. 18, no. 85, pp. 50–64, 1964. [Online]. Available: http://www.jstor.org/stable/2003405

[26] D. Süli, Endre; Mayers, An Introduction to Numerical Analysis. Cambridge University Press, 2003.

[27] Digsilent powerfactory. [Online]. Available: http://www.digsilent.de/