Un modelo generalizado y control para almacenadores de energía por superconductor magnético y supercondesador

Main Article Content

Walter Julián Gil González http://orcid.org/0000-0001-7609-1197
Alejandro Garcés
Andrés Escobar Mejía

Keywords

Sistemas de almacenamiento de energía eléctrica, Electric energy storage systems, SESS, EESS, desigualdades matriciales lineales, linear matrix inequality, LMI, supercapacitor energy storage, almacenamiento de energía supercondensador, superconducting magnetic energy storage, SCES, SMES., almacenamiento de energía magnética superconductora, SMES

Resumen

En este articulo se presenta un control de retroalimentación a un modelo lineal generalizado basados en LMI con seguimiento de acción integral para sistemas de almacenamiento de energía eléctrica (SESS) tales como: a almacenamiento de energía magnética por superconducción (SMES) y almacenamiento de energía eléctrica por supercondensador (SCES). Un compacto de modelo lineal general en la representación del espacio de estado para representar el comportamiento dinámico entre el SESS y el sistema de distribución es presentado. Para integrar los sistemas SCES y SMES al sistema de distribución se utilizan un convertidor de fuente de tensión (VSC) y un convertidor de fuente de corriente modulada por ancho de pulso (PWM-CSC), respectivamente. La estrategia de control propuesta permite el control bidireccional de la potencia activa y reactiva entre el EESS y la red ac de manera independiente. Los resultados de las simulaciones demuestran el desempeño robusto y eciente del control propuesto para operar EESS como compensadores de potencia activa y reactiva, con el n de mejorar las condiciones operativas en el sistema de distribución. Además, todos los casos propuestos se compararon con el controlador PI convencional para vericar su validez.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 860 | PDF (English) Downloads 476

Referencias

[1] A. Ortega and F. Milano, “Generalized model of VSC-Based energy storage systems for transient stability analysis,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3369–3380, Sept 2016.

[2] J. Fang, W. Yao, Z. Chen, J. Wen, and S. Cheng, “Design of anti-windup compensator for energy storage-based damping controller to enhance power system stability,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1175–1185, May 2014.

[2] J. Fang, W. Yao, Z. Chen, J. Wen, and S. Cheng, “Design of anti-windup compensator for energy storage-based damping controller to enhance power system stability,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1175–1185, May 2014.

[3] A. Pappachen and A. P. Fathima, “Load frequency control in deregulated power system integrated with SMESâ“TCPS combination using ANFIS controller,” Int. J. Electr. Power Energy Syst., vol. 82, pp. 519 – 534, Nov. 2016.

[4] M. Farahani and S. Ganjefar, “Solving LFC problem in an interconnected power system using superconducting magnetic energy storage,” Physica C, vol. 487, pp. 60 – 66, Apr. 2013.

[5] M. Rabbani, J. Devotta, and S. Elangovan, “Multi-mode wide range subsynchronous resonance stabilization using superconducting magnetic energy storage unit,” International Journal of Electrical Power & Energy Systems, vol. 21, no. 1, pp. 45 – 53, Jan. 1999.

[6] M.Farahani, “AnewcontrolstrategyofSMESformitigatingsubsynchronous oscillations,” Physica C, vol. 483, pp. 34 – 39, Dec. 2012.

[7] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1953–1961, May 2016.

[8] M. H. Ali, B. Wu, and R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. Sustainable Energy, vol. 1, no. 1, pp. 38–47, 2010.

[9] J. Shi, Y. Tang, K. Yang, L. Chen, L. Ren, J. Li, and S. Cheng, “SMES based dynamic voltage restorer for voltage fluctuations compensation,” IEEE Trans. Appl. Supercond., vol. 20, no. 3, pp. 1360–1364, 2010.

[10] E. Giraldo and A. Garces, “An adaptive control strategy for a wind energy conversion system based on pwm-csc and pmsg,” IEEE Trans. Power Systems, vol. 29, no. 3, pp. 1446–1453, May 2014.

[11] A. Rahim and E. Nowicki, “Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system,” Energy Convers. Manage., vol. 59, pp. 96 – 102, 2012.

[12] S. Wang and J. Jin, “Design and analysis of a fuzzy logic controlled smes system,” IEEE Trans. Appl. Supercond., vol. 24, no. 5, pp. 1–5, Oct 2014.

[13] M. H. Ali, M. Park, I. K. Yu, T. Murata, and J. Tamura, “Improvement of wind-generator stability by fuzzy-logic-controlled smes,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1045–1051, May 2009

[14] Jing Shi, Yuejin Tang, Li Ren, Jingdong Li, and Shijie Cheng, “Discretization-Based Decoupled State-Feedback Control for Current Source Power Conditioning System of SMES,” IEEE Trans. Power Delivery, vol. 23, no. 4, pp. 2097–2104, Oct 2008.

[15] J. Shi, L. Zhang, K. Gong, Y. Liu, A. Zhou, X. Zhou, Y. Tang, L. Ren, and J. Li, “Improved discretization-based decoupled feedback control for a seriesconnected converter of scc,” IEEE Trans. Appl. Supercond., vol. 26, no. 7, pp. 1–6, Oct 2016.

[16] A. D. Giorgio, F. Liberati, A. Lanna, A. Pietrabissa, and F. D. Priscoli, “Model predictive control of energy storage systems for power tracking and shaving in distribution grids,” IEEE Trans. Sustainable Energy, vol. 8, no. 2, pp. 496–504, April 2017.

[17] W. Gil-González, O. D. Montoya, A. Garcés, and A. Escobar-Mejía, “Supervisory LMI-based state-feedback control for current source power conditioning of SMES,” in 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), March 2017, pp. 145–150.

[18] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” Oct 2016. [Online]. Available: http://cvxr.com/cvx/

[19] W. Gil-González, O. D. Montoya, A. Garcés, and G. Espinosa-Pérez, “IDApassivity-based control for superconducting magnetic energy storage with PWM-CSC,” in 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), March 2017, pp. 89–95.

[20] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, ser. Studies in Applied Mathematics. Philadelphia: SIAM, Jun 1994, vol. 15, ch. 1.

[21] E. Giraldo, Multivariable Control, 1st ed. Bergisch Gladbach: Scholar’s Press, 2016, ch. 2.

[22] S. Chapman, Electric Machinery Fundamentals, ser. Electric machinery fundamentals. McGraw-Hill Companies, Incorporated, 2005.