Optimal Relocation of Distribution Transformers using the Multiobjective Optimization Algorithm NSGA II

Main Article Content

Rubén Iván Bolaños
Ricardo Alberto Hincapié Isaza https://orcid.org/0000-0001-8282-7826
Ramón Alfonso Gallego Rendón https://orcid.org/0000-0002-0160-8929

Keywords

NSGA II algorithm, multiobjective optimization, relocation of distribution transformers, distribution systems.

Abstract

This paper presents a methodology for optimal relocation of transformers in distribution systems. The problem is formulated as an optimization model of multiobjective linear integer type, which considers investment and operating costs, and the benet of the concept of assets to be recognized by usage charges as stipulated in Resolution CREG 097 of 2008. The model is solved using the multiobjective optimization algorithm NSGA II. To check the validity of the methodology, a real distribution system belonging to an electric utility in Colombia is used, which takes into account both single and three phase distribution transformers. The results compared with respect to the case without considering the relocation of distribution transformers, re ect the importance of this methodology and its benets to the distribution companies, and serves as a support tool for compliance with the standards set by regulatory bodies that dene the appropriate chargeability of distribution transformers.

MSC: 90Cxx, 90C29

Downloads

Download data is not yet available.
Abstract 710 | PDF (Español) Downloads 766 HTML (Español) Downloads 9206

References

[1] Universidad Tecnologica de Pereira, Comision de Regulacion de Energa y Gas (CREG). Apoyo Academico y soporte tecnico en el proceso de implementacion de planes de reduccion de perdidas de energa electrica. Informe nal tomo I, calculo de perdidas tecnicas en el nivel de tension 1. ( 2010).

[2] Comision de Regulacion de Energa y Gas (CREG). Resolucion CREG 097 de 2008. http://www.creg.gov.co, (enero 2013).

[3] Alexander Molina, Carlos Pulgarn, Ernesto Galeano y Vctor Montoya. Metodologa de Reubicacion Optima de Transformadores en el Nivel de Tension I Utilizando Algoritmos Geneticos. http://elcondensador.net, (enero 2013).

[4] P Mendez y V Llivichuzhca. Reemplazo Optimo en un parque de transformadores de Distribucion Usando Algoritmos Geneticos con Programacion en Matlab. http://biblioteca.cenace.org.ec, (enero 2013).

[5] Johnn Alejandro Quintero Salazar. Metodologa para la Reubicacion del parque de Transformadores Pertenecientes al Nivel de Tension I de los Sistemas de Distribu-cion, tesis de pregrado. Universidad Tecnologica de Pereira, (2010).

[6] Camilo Acosta, Ramon Gallego y Ricardo Hincapie. Reubicacion Optima de Transformadores de Distribucion para reduccion de Perdidas Tecnicas, Scientia et Technica, ISSN 0122-1701, 1(51), 28{34 (2012).

[7] Pedro Nu~nez, Ricardo Hincapie y Ramon Gallego. Metodologa para Reubicacion de Transformadores de Distribucion Considerando el Sistema de Proteccion, Revista Colombiana de Tecnologas de Avanzada, ISSN: 1692-7257 -, 2(20), 28{35 (2012).

[8] Ramon A. Gallego, Antonio H. Escobar, Eliana M. Toro. Tecnicas metaheursticas de optimizacion, ISBN 978-958-722-007-0. Universidad tecnologica de Pereira, 2008.

[9] Kalyanmoy Deb Multi-Objective Optimization Using Evolutionary Algorithms, ISBN 0-471-87339-X. John Wiley & Sons Ltd, 2001. Referenciado en 10, 11, 17 [10] Carlos A. Coello, David A. Van and Gary B. Lamont Evolutionary Algorithms for Solving Multi-objetive Problems, ISBN 0-306-46762-3. Kluwer Academic/ Plenum Publishers, 2002.

[11] Kalyanmoy Deb Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. http://www.iitk.ac.in/kangal/deb.shtml, february 2013.


[12] Cleve Moler. MATLAB (2009b). http://www.mathworks.com/, february 2013.

Read articles by the same author(s)