From Obtaining to Degradation of PHB: Material Properties. Part I

Main Article Content

Antonio José dos Santos
Luiz Veriano Oliveira Dalla Valentina
Andrey Alayo Hidalgo Schulz
Márcia Adriana Tomaz Duarte


Biopolymers, Degradation of PHB, poly(hydroxyalkanoates)(PHA), Poly(hydroxyalkanoa (te)PHA), Poly(hydroxybutyrate)(PHB), Poly(3-hydroxybutyrate) (PHB)


This paper presents a review of the chemical, physical and morphological characteristics, as well as the existing applications and mechanisms for the production of poly (3-hydroxybutyrate). This biopolymer, which is obtained from renewable sources, degrades when exposed in biologically active environments and is biocompatible, that is, it is not rejected by the human body in health applications. However, in spite of presenting similar properties with some conventional plastics, the PHB exhibits fragile behavior and thermal instability when processed. The literature proposes the use of blends, the development of copolymers or the insertion of additives in an attempt to improve the mechanical and thermal properties of PHB.


Download data is not yet available.
Abstract 308 | PDF (Español) Downloads 218


[1] B. Imre and B. Pukánszky, “Compatibilization in bio-based and biodegradable polymer blends,” European Polymer Journal, vol. 49, no. 6, pp. 1215– 1233, 6 2013.

[2] R. W. Lenz and R. H. Marchessault, “Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology,” Biomacromolecules, vol. 6, no. 1, pp. 1–8, 1 2005

[3] J.-W. Rhim, H.-M. Park, and C.-S. Ha, “Bio-nanocomposites for food packaging applications,” Progress in Polymer Science, vol. 38, pp. 1629–1652, 10 2013.

[4] A. Kendall, “A life cycle assessment of biopolymer production from material recovery facility residuals,” Resources, Conservation and Recycling, vol. 61, pp. 69–74, 4 2012. 270 [5] ABIPLAST, “Perfil 2015 - Indústria brasileira de transformação de materialplástico,”, Retrieved14july 2016.

[6] S. A. Casarin, J. A. M. Agnelli, S. M. Malmonge, and F. Rosário, “Blendas PHB/copoliésteres biodegradáveis: biodegradação em solo,” Polímeros, vol. 23, no. 1, pp. 115–122, 1 2013.

[7] T. Hottle, M. Bilec, and A. E. Landis, “Sustainability assessments of biobased polymers,” vol. 98, pp. 1898–1907, 6 2013.

[8] G. F. Brito, P. Agrawal, E. M. Araújo, and T. J. A. Mélo, “Biopolímeros, polímeros biodegradáveis e polímeros verdes,” Revista Eletrônica de Materiais e Processos, vol. 6, no. 2, pp. 127–139, 9 2011.

[9] Y. Chen, I.-N. Chou, Y.-H. Tsai, and H.-S. WU, “Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3hydroxyvalerate,” Journal of Applied Polymer Science, vol. 130, no. 5, pp. 3659–3667, 6 2013.

[10] S. Huda, “Anaerobic digestion of polyhydroxybutyrate accumulated in excess activatedsludge,” Journal of Water and Environment Technology, vol.11, pp. 429–438, 10 2013.

[11] P. Mousavioun, G. George, and W. Doherty, “Environmental degradation of lignin/poly(hydroxybutyrate) blends,” Polymer Degradation and Stability, vol. 97, no. 7, pp. 1114–1122, 7 2012.

[12] A. C. Quental, F. P. Carvalho, E. S. Tada, and M. I. Felisberti, “Blendas de PHB e seus copolímeros: miscibilidade e compatibilidade,” Química Nova, vol. 33, no. 2, pp. 438–446, 1 2010.

[13] G. J. M. Fechine, Polímeros biodegradáveis: tipos, mecanismos, normas e mercado mundial [online]. São Paulo, Editora Mackenzie, 2013.

[14] J. P. Eubeler, M. Bernhard, and T. P. Knepper, “Environmental biodegradation of synthetic polymers II. biodegradation of different polymer groups,” TrAC Trends in Analytical Chemistry, vol. 29, no. 1, pp. 84–100, 1 2010.

[15] A. Shrivastav, S. K. Mishra, I. Pancha, D. Jain, S. Bhattacharya, S. Patel, and S.Mishra, “Biodegradability studies of polyhydroxyalkanoate (PHA) film produced by a marine bacteria using Jatropha biodiesel by product as a substrate,” World Journal of Microbiology and Biotechnology, vol. 27, no. 7, pp. 1531–1541, 7 2011.

[16] G. Pagliano, V. Ventorino, A. Panico, and O. Pepe, “Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes,” Biotechnology for Biofuels, vol. 10, no. 113, pp. 1–24, 5 2017.

[17] C. Z. Costa, M. C. C. Albuquerque, M. C. Brum, and A. M. Castro, “Degradação microbiológica e enzimática de polímeros: uma revisão,” Química Nova, vol. 38, pp. 259–267, 2 2015.

[18] R.-C. Alejandra, C.-M. Margarita, and M.-C. M. Soledad, “Enzymatic degradation of poly(3-hydroxybutyrate) by a commercial lipase,” Polymer Degradation and Stability, vol. 97, no. 11, pp. 2473–2476, 4 2012.

[19] M. T. Maria T. Gutierrez-Wing, B. E. Stevens, C. S. Theegala, I. I. Negulescu, and K. A. Rusch, “Anaerobic biodegradation of polyhydroxybutyrate inmunicipalsewagesludge,” Journal of Environmental Engineering, vol.136, no. 7, pp. 709–718, 7 2010.

[20] R. Nogueira, C. Alves, M. Matos, and A. G. Brito, “Synthesis and degradation of poly-β-hydroxybutyrate in a sequencing batch biofilm reactor,” Bioresource Technology, vol. 100, no. 7, pp. 2106–2110, 4 2009.

[21] Y. Ke, X. Y. Zhang, S. Ramakrishna, L. M. He, and G. Wu, “Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application,” Materials Science and Engineering: C, vol. 70, no. Part 2, pp. 1107–1119, 1 2017.

[22] R. H. Marchessault, “Polyhydroxyalkanoate (PHA) history at Syracuse University and beyond,” Cellulose, vol. 16, no. 3, pp. 357–359, 6 2009.

[23] I.VromanandL.Tighzert,“Biodegradablepolymers,” Materials,vol.2,no.2, pp. 307–344, 4 2009.

[24] P. Rizzarelli and S. Carroccio, “Modern mass spectrometry in the characterization and degradation of biodegradable polymers,” Analytica Chimica Acta, vol. 808, pp. 18–43, 1 2014.

[25] M.-H. Ho, S.-Y. Li, C.-Y. Ciou, and T.-M. Wu, “The morphology and degradation behavior of electrospun poly(3-hydroxybutyrate)/magnetite and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/magnetite composites,” Journal of Applied Polymer Science, vol. 131, no. 22, pp. 1–9, 7 2014.

[26] K. Sudesh, H. Abe, and Y. Doi, “Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters,” Progress in Polymer Science, vol. 25, no. 10, pp. 1503–1555, 12 2000.

[27] N.G.Salguero, M.F.delGrosso, H.Durán, P.J.Peruzzo, J.I.Amalvy, C.R. Arbeitman, and G. García Bermúdez, “Characterization of biodegradable polymersirradiatedwithswiftheavyions,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 273, no. Supplement C, pp. 47–50, 2 2012.

[28] R. K. Sadi, G. J. M. Fechine, and N. R. Demarquette, “Effect of prior photodegradation on the biodegradation of polypropylene/poly(3hydroxybutyrate) blends,” Polymer Engineering & Science, vol. 53, no. 10, pp. 2109–2122, 2 2013.

[29] W. M. Pachekoski, C. Dalmolin, and J. A. M. Agnelli, “The influence of the industrial processing on the degradation of poly(hydroxybutyrate) - PHB,” Materials Research, vol. 16, no. 2, pp. 237–332, 4 2013.

[30] M. R. Telles, L. M. Saran, and S. H. Unêda-Trevisolli, “Produção, propriedades e aplicações de bioplástico obtido a partir da cana-de-açúcar,” Ciência e Tecnologia, vol. 2, no. 1, pp. 52–63, 9 2011.

[31] C. A. Woolnough, L. H. Yee, T. Charlton, and L. J. R. Foster,“Environmental degradation and biofouling of ’green’ plastics including short and médium chain length polyhydroxyalkanoates,” Polymer International, vol. 59, no. 5, pp. 658–667, 12 2010.

[32] M. C. S. Corrêa, M. L. Rezende, D. S. Rosa, J. A. M. Agnelli, and P. A. P. Nascente, “Surface composition and morphology of poly(3-hydroxybutyrate) exposed to biodegradation,” Polymer Testing, vol. 27, no. 4, pp. 447–452, 6 2008

[33] P. R. L. D. Doyle, V., “An investigation of the growth of human dermal fibroplasts on poly-L-lactic acid in vitro,” Journal of Materials Science, vol. 67, no. 7, pp. 381–385, 6 1996.

[34] H. Ariffin, H. Nishida, Y. Shirai, and M. A. Hassan, “Anhydride production as an additional mechanism of poly(3-hydroxybutyrate) pyrolysis,” Journal of Applied Polymer Science, vol. 111, no. 1, pp. 323–328, 1 2009.

[35] M. T. Gutierrez-Wing, B. E. Stevens, C. S. Theegala, and K. A. Rusch, “Aerobicbiodegradationofpolyhydroxybutyrateincompost,” Environmental Engineering Science, vol. 28, no. 7, pp. 477–488, 6 2011.

[36] S. Hiki, M. Miyamoto, and Y. Kimura, “Synthesis and characterization of hydroxy-terminated [RS]-poly-(3-hydroxybutirate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer,” Polymer, vol. 41, no. 20, pp. 7369–7379, 9 2000.

[37] B. Ghanbarzadeh and H. Almasi, “Biodegradable polymers,” in Biodegradation - Life of Science, R. Chamy and F. Rosenkranz, Eds. Rijeka: InTech, 2013, ch. 6, pp. 141–185.

[38] G. Braunegg, G. Lefebvre, and K. Genser, “Polyhydroxyalkanoates, biopolyesters from renewable resources,” Journal of Biotechnology, vol. 65, no. 2-3, pp. 127–161, 10 1998.

[39] S. Khanna and A. K. Srivastava, “Statistical media optimization studies for growth and phb production by Ralstonia eutropha,” Process Biochemistry, vol. 40, no. 6, pp. 2173–2182, 5 2005.

[40] R. Nonato, P. Mantelatto, and C. Rossell, “Integrated production of biodegradable plastic, sugar and ethanol,” Applied Microbiology and Biotechnology, vol. 57, no. 1, pp. 1–5, 10 2001.

[41] Y.-Z. Zhang, G.-M. Liu, W.-Q. Weng, J.-Y. Ding, and S. J. Liu, “Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-ehydroxyvalerate) from glucose,” Journal of Biotechnology, vol. 195, pp. 82– 88, 2 2015.

[42] L. F. Silva, J. G. C. Gomez, R. C. S. Rocha, M. K. Taciro, and J. G. C. Pradella, “Produção biotecnológica de poli-hidroxialcanoatos para a geração de polímeros biodegradáveis no Brasil,” Química Nova, vol. 30, no. 7, pp. 1732–1743, 8 2007.

[43] M. Domínguez-Díaz, A. Meneses-Acosta, A. Romo-Uribe, C. Peña, D. Segura, and G. Espin, “Thermo-mechanical properties, microstructure and biocompatibility in poly-β-hydroxybutyrates (PHB) produced by OP and OPN strains of Azotobacter vinelandii,” European Polymer Journal, vol. 63, pp. 101–112, 2 2015.

[44] S. K. Ghosh, S. Pal, and S. Ray, “Study of microbes having potentiality for biodegradation of plastics,” Environmental Science and Pollution Research, vol. 20, no. 7, pp. 4339–4355, 7 2013.

[45] M. Zinn, B. Witholt, and T. Egli, “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate,” Advanced Drug Delivery Reviews, vol. 53, no. 1, pp. 5–21, 12 2001.

[46] C. S. K. Reddy, R. Ghai, and V. C. Kalia, “Polyhydroxyalkanoates: an overview,” Bioresource Technology, vol. 87, no. 2, pp. 137–146, 4 2003.

[47] A. T. Michel and S. L. Billington, “Characterization of poly-hydroxybutyrate films and hemp fiber reinforced composites exposed to accelerated weathering,” Polymer Degradation and Stability, vol. 97, no. 6, pp. 870–878, 6 2012.

[48] E. R. Coats, B. S. Watson, and C. K. Brinkman, “Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology,” Water Research, vol. 106, pp. 26–40, 12 2016.

[49] H. Wu, J. Chen, and G.-Q. Chen, “Engineering the growth pattern and cell morphology for enhanced phb production by Escherichia coli,” Applied Microbiology and Biotechnology, vol. 100, no. 23, pp. 9907–9916, 12 2016.

[50] A. A. Shah, F. Hasan, A. Hameed, and S. Armed, “Biological degradation of plastics: A comprehensive review,” Biotechnology Advances, vol. 26, no. 3, pp. 246–265, 6 2008.

[51] A.Hoffmann, S.Kreuzberger, andG.Hinrichsen, “Influenceofthermaldegradation on tensile strength and Young’s modulus of poly(hydroxybutyrate),” Polymer Bulletin, vol. 33, no. 3, pp. 355–359, 8 1994.

[52] P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, “Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate,” Journal of Materials Science, vol. 19, no. 9, pp. 2781–2794, 9 1984.

[53] D. Jendrossek and R. Handrick, “Microbial degradation of polyhydroxyalkanoates,” Annual Review of Microbiology, vol. 56, no. 1, pp. 403–432, 1 2002.

[54] Y.-X. Weng, X.-L. Wang, and Y.-Z. Wang, “Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions,” Polymer Testing, vol. 30, no. 4, pp. 372–380, 6 2011.

[55] W. V. Srubar III, C. Z. Wright, A. TSUI, and C. W. Frank, “Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics,” Polymer Degradation and Stability, vol. 97, no. 10, pp. 1922–1929, 10 2012.

[56] R.SharmaandA.R.Ray, “Polyhydroxybutyrate, itscopolymersandblends,” Journal of Macromolecular Science, Part C, vol. 35, no. 2, pp. 327–359, 9 2006.

[57] M. L. C. Machado, N. C. Pereira, L. F. Miranda, M. C. Terence, and J. G. C. Pradella, “Estudo das propriedades mecânicas e térmicas do polímero poli3-hidroxibutirato (PHB) e de compósitos PHB/pó de madeira,” Polímeros: Ciência e Tecnologia, vol. 20, no. 1, pp. 65–71, 3 2010.

[58] M. Kansiz, A. Domíngues-Vidal, D. McNaughton, and B. Lendl, “Fouriertransform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallization of polyhydroxyalkanoates (PHAs),” Analytical and Bioanalytical Chemistry, vol. 388, pp. 1207–1213, 7 2007.

[59] A. F. Santos, L. Polese, M. S. Crespi, and C. A. Ribeiro, “Kinetic model of poly(3-hydroxybutyrate) thermal degradation from experimental nonisothermal data,” Journal of Thermal Analysis and Calorimetry, vol. 96, no. 1, pp. 287–291, 4 2009.

[60] M. Yokouchi, Y. Chatani, H. Tadokoro, K. Teranishi, and H. Tani, “Structural studies of polyesters: 5. molecular and crystal structures of optically active and racemic poly (β-hydroxybutyrate),” Polymer, vol. 14, no. 6, pp. 267–272, 6 1973

[61] J. Cornibert and R. H. Marchessault, “Physical properties of poly-3hydroxybutyrate. IV. conformational analysis and crystalline structure,” Journal of Molecular Biology, vol. 71, no. 3, pp. 735–756, 11 1972.

[62] R. Androsch, H.-J. Radusch, and S. S. Funari, “Crystallization, glass transition and morphology of (R)-3-hydroxybutyrate oligomers,” European Polymer Journal, vol. 43, pp. 4961–4974, 12 2007.

[63] M. Gazzano, M. L. Focarete, C. Riekel, and M. Scandola, “Bacterial poly(3hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study,” Biomacromolecules, vol. 1, no. 4, pp. 604–608, 9 2000.

[64] L. Sawyer, D. Grubb, and G. F. Meyers, Polymer Microscopy. New York: Springer, 2008.

[65] U. Eisele, Introduction to polymer physics. Berlim: Springer-Verlag, 1990.

[66] J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, "The Rate of Crystallization of Linear Polymers with Chain Folding", In: Treatise on Solid State Chemistry: Volume 3 Crystalline and Noncrystalline Solids. Boston, M: Springer US, 1976, pp. 497–614.

[67] A. C. Sarzi and M. I. Felisberti, “Efeito da adição de agentes de nucleação na cristalização do poli[(R)-3-hidroxibutirato], PHB,” In: X Congresso Brasileiro de Polímeros, pp. 1–3, 10 2009.

[68] S. V. Canevarolo JR., Ciência dos polímeros: um texto básico para tecnólogos e engenheiros. São Paulo: Artliber Editora, 2010.

[69] L. A. Utracki, Polymer alloys and blends: thermodynamics and rheology. Cincinnati, OH: Hanser Gardner Publications, 1990.

[70] E. E. Shafee, “The influence of semicrystalline morphology on the dielectric relaxation properties of poly(3-hydroxybutyrate),” European Polymer Journal, vol. 37, no. 8, pp. 1677–1684, 8 2001.

[71] F. O. Ayorinde, K. A. Saeed, E. Price, A. Morrow, W. E. Collins, F. McInnis, S. K. Pollack, and B. E. Eribo, “Production of poly(β-hydroxybutyrate) from saponified Vernonia galamensis oil by Alcaligenes eutrophus,” Journal of Industrial Microbiology and Biotechnology, vol. 21, no. 1, pp. 46–50, 8 1998.

[72] G. Yu and R. H. Marchessault, “Characterization of low molecular weight poly(β-hydroxybutyrate) from alkaline and acid hydrolysis,” Polymer, vol. 41, no. 3, pp. 1087–1098, 2 2000.

[73] Y. Aoyagi, K. Yamashita, and Y. Doi, “Thermal degradation of poly[(R)3-hydroxybutyrate], poly[ε-caprolactone], and poly[(s)-lactide],” Polymer Degradation and Stability, vol. 76, no. 1, pp. 53–59, 1 2002.

[74] S. J. Organ and P. J. Barham, “On the equilibrium melting temperature of polyhydroxybutyrate,” Polymer, vol. 34, no. 10, pp. 2169–2174, 1 1993.

[75] J. A. F. R. Rodrigues, D. F. Parra, and A. B. Lugão, “Crystallization on films of phb/peg blends,” Journal of Thermal Analysis and Calorimetry, vol. 79, no. 2, pp. 379–381, 1 2005.

[76] G. J. M. Koning, P. J. Lemstra, D. J. T. HILL, T. G. Carswell, and J. H. O’Donnell, “Ageing phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 1. a study on the mobility in poly[(R)-3-hydroxybutyrate] powders by monitoring the radical decay with temperature after γ-radiolysis at 77 K,” Polymer, vol. 33, no. 15, pp. 3295–3297, 1992.

[77] A.El-Hadi, R.Schnabel, E.Straube, G.Müller, andS.Henning, “Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends,” Polymer Testing, vol. 21, no. 6, pp. 665–674, 9 2002.

[78] L. C. E. Struik, Physical ageing in amorphous polymers and other materials. Amsterdam: Elsevier Science, 1980.

[79] G. J. M. Koning and P. J. Lemstra, “Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. embrittlement and rejuvenation,” Polymer, vol. 34, no. 19, pp. 4089–4094, 12 1993.

[80] C. C. Mello, M. F. Costa, and R. M. S. M. Thiré, “Avaliação do efeito da cristalização secundária em compósitos de polihidroxibutirato e pó de coco silanizado,” In: XI Congresso Brasileiro de Polímeros, pp. 2364–2369, 10 2011.

[81] PHB Industrial, “PHB Industrial - Produtos,” site.htm, Retrieved 24 January 2016.

[82] R. Wellen, M. Silveira Rabello, I. Cesar Araujo Júnior, G. J. M. Fechine, and E. Canedo, “Melting and crystallization of poly(3-hydroxybutyrate): Effect of heating/cooling rates on phase transformation,” Polímeros, vol. 25, no. 3, pp. 296–304, 6 2015.

[83] A. U. Faria and S. M. Martins-Franchetti, “Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do rio Atibaia,” Polímeros, vol. 20, no. 2, pp. 141–147, 6 2010.

[84] D. S. Rosa and R. Pantano Filho, Biodegradação: um ensaio com polímeros. São Paulo: Moara, 2003.

[85] J. M. Pachence, M. P. Bohrer, and J. Kohn, “Chapter 23 - biodegradable polymers,” in Principles of Tissue Engineering (Third Edition), third edition ed., R. Lanza, R. Langer, and J. Vacanti, Eds. Burlington: Academic Press, 2007, pp. 323–339.

[86] G. A. D. Burlein and M. C. G. Rocha, “Mechanical and morphological properties of LDPE/ PHB blends filled with castor oil pressed cake,” Materials Research, vol. 17, pp. 97–105, 2 2014.

[87] L. Wei, A. G. McDonald, and N. M. Stark, “Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide,” Biomacromolecules, vol. 16, no. 3, pp. 1040–1049, 2 2015.

[88] L. Wei, N. M. Stark, and A. G. McDonald, “Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrateco-3-hydroxyvalerate) bioplastics reinforced and grafted with [small alpha]cellulose fibers,” Green Chemistry, vol. 17, pp. 4800–4814, 8 2015.

[89] M. Larsson, O. Markbo, and P. Jannasch, “Melt processability and thermomechanical properties of blends based on polyhydroxyalkanoates and poly(butylene adipateco-terephthalate),” RSC Advances, vol. 6, pp. 44354– 44363, 4 2016.

[90] D. Garcia-Garcia, E. Rayón, A. Carbonell-Verdu, J. Lopez-Martinez, and R. Balart, “Improvement of the compatibility between poly(3hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide,” European Polymer Journal, vol. 86, no. Supplement C, pp. 41–57, 1 2017.

[91] L. Wei and A. G. McDonald, “Peroxide induced cross-linking by reactive melt processing of two biopolyesters: Poly(3-hydroxybutyrate) and poly(l-lactic acid) to improve their melting processability,” Journal of Applied Polymer Science, vol. 132, no. 13, p. 41724, 4 2015.

[92] J. C. O. Villanova, R. L. Oréfice, and A. S. Cunha, “Aplicações farmacêuticas de polímeros,” Polímeros: Ciência e Tecnologia, vol. 20, no. 1, pp. 51–64, 3 2010.

[93] C.Chatzidoukas, G.Penloglou, andC.Kiparissides, “Developmentofastructured dynamic model for the production of polyhydroxybutyrate (PHB) in Azohydromonas lata cultures,” Biochemical Engineering Journal, vol. 71, no. Supplement C, pp. 72–80, 2 2013.

Read articles by the same author(s)