Computational Study of Allotropic Structures of Carbon by Density Functional Theory (DTF)
Main Article Content
Keywords
DFT, Computational Simulation, allotropic structures, Molecular Orbital, Electrostatic Potential.
Abstract
In this paper using Density Functional Theory (DFT), the principal carbon allotropic crystalline structures (Diamond, graphite, nanotube y fullerene - C60) were simulated. The results shows diamond sp3 bonds formation between carbon atoms and low reactivity, indicating low probability of lateral compound formation and high mechanical properties. Interplanar weakness was evidentin graphite structure, which is related to solid lubrication process. Carbon-Carbon metallic bonds and polarizations at the edges of the structure were observed in Armchair Carbon Nanotube, stabilizing the system which allows the nanotube continuous growth. In fullerene C60 structurea Faraday nano-gauge behavior was confirmed, together withlow probability of interatomic polarization, indicating high structural stability. Besides Total Energy (TE) and Nuclear Repulsion Energy (NRE) values were used to perform energetic comparisons between different structures, allowing the study of electronic stability and their relationship to mechanical properties.
PACS: 31.15.E-
Downloads
References
[2] A. Malshe, P. B., B. W., and N. H., “A review of techniques for polishing and planarizing chemically vapor-deposited (cvd) diamond films and substrates,” Diamond and Related Materials, vol. 8, no. 7, pp. 1198 – 1213, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925963599000886
[3] T. Mang and W. Dresel, Lubricants and Lubrication. Wiley, 2007. [Online]. Available: http://books.google.com.co/books?id=ryKplDzZ_AoC
[4] E. Armelin, R. Oliver, F. Liesa, J. I. Iribarren, F. Estrany, and C. Alemán, “Marine paint fomulations: Conducting polymers as anticorrosive additives,” Progress in Organic Coatings, vol. 59, no. 1, pp. 46 – 52, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0300944007000148
[5] G. Perfetti, K. Jansen, W. Wildeboer, P. van Hee, and G. Meesters, “Characterization of physical and viscoelastic properties of polymer films for coating applications under different temperature of drying and storage,” International Journal of Pharmaceutics, vol. 384, no. 1â“2, pp. 109 – 119, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378517309007169
[6] S. Chand, “Review carbon fibers for composites,” Journal of Materials Science, vol. 35, no. 6, pp. 1303–1313, 2000. [Online]. Available: http://dx.doi.org/10.1023/A%3A1004780301489
[7] K. Friedrich, S. Fakirov, and Z. Zhang, Polymer Composites: From Nano- to Macro-Scale. Springer, 2005. [Online]. Available: http://books.google.com.co/books?id=0El8PNErEKcC
[8] S. Mahish and D. Duggal, “Carbon nanotubes-fibres, composites: Production, structure, properties and applications,” Asian Textile Journal, vol. 14, no. 4, pp. 68–77, 2005.
[9] K. Spear, J. Dismukes, and E. Society, Synthetic diamond: emerging CVD science and technology, ser. Electrochemical Society series. Wiley, 1994. [Online]. Available: http://books.google.com.co/books?id=u-9TAAAAMAAJ
[10] J. Field, The Properties of natural and synthetic diamond. Academic Press, 1992. [Online]. Available: http://books.google.com.co/books?id=ENNPAQAAIAAJ
[11] R. Gill, “Carbon Nanotube Superconductors,” International Journal of Engineering and Mathematical Sciences, vol. 1, pp. 25–28, 2012. [Online]. Available: http://ijems.org/uploads/232134750IJEMS4.pdf
[12] F. Cataldo and T. Da Ros, Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, ser. Carbon Materials Series. Springer, 2008. [Online]. Available: http://books.google.com.co/books?id=fQsWkbxk-9EC
[13] S. Ilijima, “Helical Microtubules of Graphitic Carbon,” Nature, vol. 354, pp. 56–58, 1991.
[14] S. Jan, P. Kirsten, H. Malte, W. Sebastian, and S. Karl, “A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD- and arc-grown multi-wall carbon nanotubes,” Composites Science and Technology, vol. 70, no. 1, pp. 173 – 180, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0266353809003704
[15] R. Baughman, A. Zakhidov, and W. de Heer, “Carbon nanotubes–the route toward applications,” Science, vol. 297, no. 5582, pp. 787–792, 2002. [Online]. Available: http://www.sciencemag.org/content/297/5582/787.abstract
[16] J. Isaacs, A. Tanwani, M. Healy, and L. Dahlben, “Economic assessment of single-walled carbon nanotube processes,” Journal of NanoparticleResearch, vol. 12, no. 2, pp. 551–562, 2010. [Online]. Available: http://dx.doi.org/10.1007/s11051-009-9673-3
[17] A. Benito, W. Maser, and M. Martínez, “Carbon nanotubes: From production to functional composites,” International Journal of Nanotechnology, vol. 2, no. 1-2, pp. 71–89, 2005.
[18] J. González, A. Ruden, C. Rincón, C. Barbosa, and F. Sequeda, “Simulación de las Estructuras Cristalinas de Recubrimientos Duros de Nitruros y Carburos de Metales de Transición,” in V Congreso Internacional De Materiales, Cali, 2009.
[19] M. Liberman and A. Lichtenberg, “Principles of plasma discharges and materialsprocessing,” MRS Bulletin, vol. 30, pp. 899–901, 11 2005. [Online]. Available: http://journals.cambridge.org/article_S0883769400014196
[20] K. Miyoshi, Solid Lubrication Fundamentals and Applications, ser. Materials Engineering. Taylor & Francis, 2001. [Online]. Available: http://books.google.com.co/books?id=s7GDHivAXdQC
[21] C. Cousins, “Elasticity of carbon allotropes. i. optimization, and subsequent modification, of an anharmonic keating model for cubic diamond,” Phys. Rev. B, vol. 67, p. 024107, Jan 2003. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.67.024107
[22] M. Frisch, G. Trucks, H. Schlegel, M. Scuseria, G.and Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, H. Kitao, O. amd Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, A. Malick, D.and Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, A. Peng, C.and Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M.Wong, C. Gonzalez, and J. Pople, “Gaussian 03, Revision C.02,” Gaussian, Inc., Wallingford, CT, 2004.
[23] A. Frisch and M. Frisch, “Gaussian 03w user’s reference, second edition,” gaussian, Inc, Carnegie office park, building 6, Pittsburgh, PA 15106 USA, Voice: 412-279-6700, Email: info@gaussian.com, Web: www.gaussian.com.
[24] N. Pavel, J. Michael, B. Kelley, R. Frank, T. Daniel, K. Smith, and E. Richard, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters, vol. 313, no. 1â“-2, pp. 91 – 97, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0009261499010295
[25] M. Basantes and J. Benavides, “Obtención de una matriz nanoceramica de TiO2reforzada con nanotubos de carbono,” Tesis de Grado, Universidad del Valle, 2009.
[26] G. Guanghua, a. Tahir, and A. William, “Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes,” Nanotechnology, vol. 9, no. 3, p. 184, 1998. [Online]. Available: http://stacks.iop.org/0957-4484/9/i=3/a=007
[27] P. Unwin, “Fullerenes (An Overview).” [Online]. Available:http://www.ch.ic.ac.uk/local/projects/unwin/Fullerenes.html
[28] J. Hare, “Some properties of carbon and C60,” The University of Sussex, Brighton, East Sussex, Tech. Rep. [Online]. Available: http://www.creative-science.org.uk/propc60.html
[29] I. Kunadian, A. Rodney, M. Pinar, and Q. Dali, “Multiwalled carbon nanotube deposition profiles within a {CVD} reactor: An experimental study,” Chemical Engineering Science,
vol. 64, no. 7, pp. 1503 – 1510, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0009250908007033
[30] J. Salvetat, J. Bonard, N. Thomson, A. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Applied Physics A, vol. 69, no. 3, pp. 255–260, 1999. [Online]. Available: http://dx.doi.org/10.1007/s003390050999
[31] A. Krishnan, E. Dujardin, T. Ebbesen, P. Yianilos, and M. Treacy, “Young’s modulus of single-walled nanotubes,” Phys. Rev. B, vol. 58, pp. 14 013–14 019, Nov 1998. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.58.
[32] E. Hernández and A. Rubio, “Nanotubes: Mechanical and Spectroscopic Properties,” 1999. [Online]. Available: http://www.fam.cie.uva.es/~arubio/psi_k/node5.html
[33] P. Schewe and B. Stein, “Physics News Update, The American Institute of Physics Bulletin of Physics News,” 1996. [Online]. Available: http://www.aip.org/enews/physnews/1996/split/pnu279-2.htm
[34] P. Avouris, “a nanotube researcher at the IBM labs,” in Lecture given at Michigan State University, Michigan, 2000.
[35] D. Bornside, T. Kinney, and R. Brown, “Minimization of thermoelastic stresses in czochralski grown silicon: application of the integrated system model,” Journal of Crystal Growth, vol. 108, no. 3â“-4, pp. 779 – 805, 1991. [Online]. Available: http://www.sciencedirect.com/science/article/pii/002202489190260C