Sand as thermoluminescent dosimeter to therapeutic doses

Main Article Content

Daniel Ricaurte
Juana Salcedo
Rafael Cogollo


sands, thermoluminescence, dosimetry


This work describes the characteristic thermoluminiscent of sand coming from Coveñas beaches, for its use as therapeutic dose dosimeter. The selected samples, annealed at 400oC during 1 hour, were irradiated to different doses using an unit of 60Co Theratron 780C in air to ambient temperature. The reading was carried out in a Harshaw TLD 4500. The main dosimetric properties of the material (glow curve, response reproducibility, reutilization, linearity and thermal decay) have been studied in detail. The glow curve of the sand samples presents a peaks TL at about 145◦C. The results show that the material has a linear response to the dose from 50 cGy until 1000 cGy. The studied sand samples can be used as thermoluminescent dosimeters for applications in different areas. The importance of this work is that the sand is a natural substance available in large quantities, low cost and can be used in clinical physics to evaluate the dose received by the patient during medical treatment.

PACS: 29.40.-n, 81.40.Wx


Download data is not yet available.
Abstract 716 | PDF (Español) Downloads 240


[1] W. L. McLaughlin, A. W. Boyd, K. H. Chadwick, J. C. McDonal and A. Miller. Dosimetry for Radiation Processing, ISBN 0850667402. Taylor & Francis, Londres, 1989.

[2] F. Daniels, C. Boyd and D. Saunders. Thermoluminescence as a Research Tool . Science, ISSN 0036–8075, 117(3040), 343–349 (1953).

[3] Y. S. Horowitz. Thermoluminescence and thermoluminescent dosimetry, ISBN 0849356660. CRC Press, Boca Raton, 1984.

[4] S. W. S. Mckeever and R. Chen. Luminescense Models. Radiation Measurements, ISSN 1350–4487, 27(5–6), 625–661 (1997).

[5] S. W. S. Makever, M. Moscovitch and P. D. Townsend. Thermoluminescence Dosimetry Materials: properties and uses, ISBN 1870965191. Nuclear Technology Publisching, Ashford, 1995.

[6] V. Kortov. Materials for thermoluminescent dosimetry: Current status and future trends. Radiation Measurements, ISSN 1350–4487, 42(4–5), 576–581 (2007).

[7] Pradeep Narayan, K. R. Senwar, S. G. Vaijapurkar, D. Kumar and P. K. Bhatnagar. Application of commercial glasses for high dose measurement using the thermoluminescent technique. Applied Radiation and Isotopes, ISSN 0969–8043, 66(1), 86–89 (2008).

[8] M. I. Teixeira, G.M. Ferraz and L. V. E. Caldas. EPR dosimetry using commercial glasses for high gamma doses. Applied Radiation and Isotopes, ISSN 0969–8043, 62(2), 365–370 (2005).

[9] A. A. Jr. Rodrígues and L. V. E. Caldas. Commercial plate window glass tested as routine dosimeter at a gamma irradi-ation facility. Radiation Physics and Chemistry, ISSN 0969–806X, 63(3), 765–767 (2002).

[10] S. G. Vaijapurkar and P. K. Bhatnagar. Low cost thermoluminescence (TL) gam- ma dosimeter for radio-therapy. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, ISSN 0735–245X, 21(2), 267–269 (1993).

[11] S. G. Vaijapurkar, R. Raman and P. K. Bhatnagar. Sand a high gamma do- se thermoluminescence dosimeter . Radiation Measurements, ISSN 1350–4487, 29(2), 223–226 (1998).

[12] S. Chawla, T. K. Gundu Rao, Y. Singhvi A. K. Quartz thermoluminescense dose and dose–rate effects and their implications. Radiation Measurements, ISSN 1350–4487, 29(1), 53–63 (1998).

[13] M. I. Teixeira, G. M. Ferraz, L. V. E. Caldas. Sand for high-dose dosimetry using the EPR technique. Applied Radiation and Isotopes, ISSN 0969–8043, 62(2), 359– 363 (2005).

[14] M. I. Teixeira and L. V. E. Caldas. Sintered sand pellets for high-dose dosimetry. Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms, ISSN 0168–583X, 218, 194–197 (2004).

[15] José Luis Muñiz Gutiérrez. Métodos experimentales de dosimetría postal para el control de calidad en radioterapia basados en LiF:Mg,Ti (TLD-100) y LiF:Mg,Cu,P (GR-200): Aplicación de métodos numéricos al análisis de las curvas de termoluminiscencia. Madrid, 1999, 203 h. Tesis Doctoral (Doctor en Ciencias Física). Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física de Materiales.

[16] Edinson Humberto Osorio López. Estudio de la termoluminiscencia en el vi- trocerámico LAS:CeO2. Medellín, 2008, 54 h. Tesis de Maestría (Magíster en Ciencias Química). Universidad de Antioquia, Facultad de Ciencias Exactas y Naturales, Instituto de Química.

[17] Omar Darío Gutiérrez Flórez. Síntesis y caracterización de materiales vitro- cerámicos con propiedades de luminiscencia. Medellín, 2006, 122 h. Tesis de Maestría (Magíster en Ciencias Química). Universidad Nacional de Colombia– Medellín, Facultad de Ciencias, Escuela de Química.

[18] Jorge Isaacs Herrera Cuitiva. 2008. Estudio de las principales características dosimétricas del TLD - 100. Montería, 2008, 90 h. Trabajo de grado (Físico). Universidad de Córdoba, Facultad de Ciencias e Ingenierías, Departamento de Física.

Most read articles by the same author(s)