Hydrodynamic Analysis of Rectangular Channels Network Using Twodimensional Numerical Simulations

Main Article Content

Emmanuel Munguía-Balvanera
Alberto Blanco-Piñón
Justino Alavez-Ramírez

Keywords

rectangular channels network, meanders, depth, energy dissipation, water volumes retention

Abstract

In the biological context water is known to be favorable in wetlands, whether these are natural or artificial. The problem being addressed is the lack of hydrodynamic studies on the know-how of water behavior in artificial wetlands. This work was analyzed in three localities, and was complemented with a comparison of the shape of artificial wetlands at different ages and parts of the world; and it was concluded that its geometry is in a grid-shaped canals. For the artificial wetland grid a free two-dimensional software was used to make numerical simulations and deduce the hydrodynamic behavior. It was shown that the grid accomplishes the behavior of the natural wetlands; dissipating the energy of the water flow by draining and holding it down. The grid canal does it better than an equivalent meandering canal; the results were not found in other sources. The advantage of using a free 2D software to make artificial wetland simulations is its convenient representation of water flows and low cost. More research remains to be done on the field of wetland hydrodynamics, such as: different geometric shapes, the inclusion of sediment drag, rain simulation, among other aspects.

Downloads

Download data is not yet available.
Abstract 989 | PDF (Español) Downloads 605 HTML (Español) Downloads 747

References

[1] B. Ross-Larson, M. de Coquereaumont, and C. Trott, Eds., Informe sobre Desarrollo Humano 2006. Programa de las Naciones Unidas para el Desarrollo (PNUD), 2006. [Online]. Available:http://hdr.undp.org/sites/default/files/hdr_2006_es_completo.pdf 74

[2] R. Connor and E. Koncag¨ul, “Agua para un mundo sostenible:Resumen ejecutivo,” UNESCO, Tech. Rep., 2015. [Online].Available:http://unesdoc.unesco.org/images/0023/002322/232272s.pdf 74

[3] aSecretaría de la Convención de Ramsar, Manual de la Convención de Ramsar:Guía a la Convención sobre los Humedales (Ramsar, Irán, 1971),4th ed.Secretaría de la Convención de Ramsar, Gland (Suiza), 2006. 75

[4] D. Russi, P. ten Brink, A. Farmer, T. Badura, D. Coates, J. F¨orster,R. Kumar, and N. Davidson, “The Economics of Ecosystems and Biodiversity for Water and Wetlands,” IEEP, London and Brussels; Ramsar Secretariat,Gland., Tech. Rep., 2013. [Online]. Available: http://doc.teebweb.org/ 75,76

[5] C.-T. Morehart, “Mapping ancient chinampa landscapes in the Basin of Mexico:A remote sensing and GIS approach,” Journal of Archaeological Science,vol. 39, no. 7, pp. 2541–2551, 2012. 75

[6] M. Serra Puche and J. Lazcano Arce, “Arqueología en el sur de la cuenca de México. Diagnóstico y futuro. In Memoriam W.T. Sanders,” Cuicuilco,vol. 16, no. 47, pp. 19–38, 2009. 75

[7] J.-J. Jiménez-Osorio and V.-M. Rorive, Eds., Los Camellones y Chinampas Tropicales. Universidad Autónoma de Yucatán, 1991. [Online].Available:http://www.reservaeleden.org/agp/libro/lec/camelloneschinanpas.pdf 75

[8] D. van Breen, Beemsterlants Caerte, Historic map of Beemster, the Netherlands, Geheugen van Nederland; Kaartencollectie Provinciale Atlas,1658. [Online]. Available:https://es.wikipedia.org/wiki/Beemster 75, 79

[9] C.-T. Morehart and C. Frederick, “The chronology and collapse of pre-aztec raised field (chinampa) agriculture in the northern basin of mexico,” Antiquity,vol. 88, no. 340, pp. 531–548, 2014. 75

[10] C.-T. Morehart, L. Overholtzer, A. Meza-Peñalosa, and C. Serrano-Sánchez, “Proyecto Chinampero Xaltocan: Informe de la temporada de campo octubre 2007 - febrero 2008,” Tech. Rep. [Online]. Available:https://asu.academia.edu/ChristopherMorehart 75

[11] Delimitación Cartográfica de Veta la Palma, Consejerías de Obras Públicas y Transporte, Agricultura y Pesca, y Medio Ambiente. JUNTA DE ANDALUCÍA
[Online].Available:http://www.juntadeandalucia.es/medioambiente/site/portalweb/ 75

[12] J. González Ortiz, “Holanda y el agua,” Papeles de Geografía, no. 16, pp.191–216, 1990. 75, 79

[13] R. Aguilar, E. Pardo, J.-M. Cornax, S. García, and J. Ubero,“Doñana y el Golfo de Cádiz: Propuesta para la ampliación del área marina protegida,” OCEANA, Tech. Rep., 2010. [Online]. Available:http://oceana.org/sites/default/files/reports/Donana_2010_ESP.pdf 75

[14] J.-M. Medialdea, “Ecosystem approach to Aquaculture management and biodiversity conservation in a Mediterranean coastal wetland:case study of Doniana marshes (Andalucia, Spain),” United Nations Environment Programme, Tech. Rep., 2012. [Online]. Available:http://www.rac-spa.org/node/975 75, 76

[15] G.-P. van de Ven, Leefbaar Laagland: Geschiedenis van de waterbeheersing en landaanwinning in Nederland, 5th ed. Uitgeverij Matrijs, 2003. 75, 76

[16] J.-M. Pérez Sánchez, “El manejo de los recursos naturales bajo el modelo agrícola de camellones chontales en Tabasco,” Iberofórum. Revista de Ciencias Sociales de la Universidad Iberoamericana, vol. II, no. 4, pp. 1–9,2007. [Online]. Available: revista.iberoforum@uia.mx 75

17] J.-M. Medialdea, “A New Approach to Ecological Sustainability through Extensive Aquaculture: The Model of Veta la Palma.” Madison,Wisconsin USA:2008 TIES Workshop, 2008. [Online]. Available:http://www.vetalapalma.es 76

[18] T. Groenedijk, Nederlandse Plaatsnamen. Slingenberg Boekproducties,2000. 76

[19] E. Bladé, L. Cea, G. Corestein, E. Escolano, J. Puertas, M.-E. Vázquez-Cendón, J. Dolz, and A. Coll, “Iber: herramienta de simulación numérica del flujo en ríos,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 30, no. 1, pp. 1–10, 2014. 76, 78

[20] M.-H. Chaudhry, Open-Channel Flow, 2nd, Ed. Springer, 2008. 78

[21] A.-K. Rastogi and W. Rodi, “Predictions of Heat and Mass Transfer in Open Channels,” Journal of the Hydraulics Division HY3, vol. 104, no. 3, pp. 397–420, 1978. 78

[22] L. Cea, J. Puertas, and M.-E. Vázquez-Cendón, “Depth averaged modelling of turbulent shallow water flow with wet-dry fronts,” Archives of Computational Methods in Engineering, vol. 11, no. 4, pp. 1–50, 2006. 78, 79

[23] W. Wu, Computational River Dynamics. Taylor & Francis, 2008. 78