Application of a Model of Balance Population in a Ball Mill in the Cement Industry

Main Article Content

Ismael Rivera
Freddy Quintero
Oswaldo Bustamante https://orcid.org/0000-0002-1692-991X
G. Loaiza

Keywords

Conservation laws, test marked ball, wear law, grinding media, mill balls

Abstract

This article studies a continuous rotary mill for the cement industry. Specifically, a model is used population balance, where a law constant wear is the constitutive equation, in order to obtain: the distribution mass of the ball in mill, the total consumption of steel of the balls and the inlet flow of balls for the recharge in steady state. The database was obtained applying the Ball test marked industrial scale in a rotatory mill of the Argos SA company.

MSC: 35L65

Downloads

Download data is not yet available.
Abstract 1381 | PDF (Español) Downloads 2366 HTML (Español) Downloads 1341

References

[1] H. Rose and R. Sullivan, Treatise on internal mechanics of ball, tube, androd mills. London: Constable and Company, 1985. 12

[2] M. S. Powell and G. N. Nurick, “A study of charge motionin rotary mills Part 1-extension of the theory,” Minerals Engineering,vol. 9, no. 2, pp. 259–268, 1996. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0892687596000088 12

[3] F. Bond, New Equation for Calculating the Work Index from A-C closed Circuit Ball Mill Grindability Test. Allis Chalmer Publication, 1960. 13

[4] J. M. Menacho and F. J. Concha, “Mathematical model ofball wear in grinding mills II. General solution,” Powder Technology, vol. 52, no. 3, pp. 267–277, 1987. [Online]. Available: http://www.sciencedirect.com/science/article/pii/003259108780116X 13,14, 17

[5] J. Menacho and F. Concha, “Mathematical model of ball wearin grinding mills I. Zero-order wear rate,” Powder Technology,vol. 47, no. 1, pp. 87–96, 1986. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0032591086800134 13, 14,17

[6] R. Bürger, K. Karlsen, and J. Towers, “Closed-form and finite difference solutions to a population balance model of grinding mills,” Journal of Engineering Mathematics, vol. 51, no. 2, pp. 165–195, 2005. [Online].Available: http://dx.doi.org/10.1007/s10665-004-1054-4 13

[7] H. M. Hulburt and S. Katz, “Some problems in particle technology: A statistical mechanical formulation,” Chemical Engineering Science, vol. 19, no. 8, pp. 555–574, 1964. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0009250964850478 13

[8] D. Verkoeijen, G. A. Pouw, G. M. H. Meesters, and B. Scarlett, “Population balances for particulate processesâ”a volume approach,” Chemical Engineering Science, vol. 57, no. 12, pp. 2287–2303, 2002. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0009250902001185 13

[9] A. D. Randolph and M. A. Larson, “Transient and steady statesize distributions in continuous mixed suspension crystallizers,” AIChE Journal, vol. 8, no. 5, pp. 639–645, 1962. [Online]. Available:http://dx.doi.org/10.1002/aic.690080515 13

[10] D. Ramkrishna, Population Balances - Theories and Applications to Particulate Systems in Engineering. San Diego: Academic Press Inc., 2000.13

[11] M. M. Attarakih, H.-J. Bart, and N. M. Faqir, “Numerical solution of the spatially distributed population balance equation describingthe hydrodynamics of interacting liquidâ“liquid dispersions,” ChemicalEngineering Science, vol. 59, no. 12, pp. 2567–2592, 2004. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0009250904001484 14

[12] I. Rivera, F. Quintero, and O. Bustamante, “Análisis del desgaste de medios moledores de acero en un molino de bolas de la compañía Argos S.A,” Prospectiva, vol. 10, no. 1, pp. 108–112, 2012. [Online]. Available:http://dialnet.unirioja.es/servlet/articulo?codigo=4212405 14, 15, 16, 24

[13] D. W. Green, R. H. Perry, and M. J, PerryâTMs Chemical EngineerâTMsHandbook, 7th ed. New York: McGraw-Hill, 2008. 14