Aplicación de un modelo de balance poblacional a un molino de bolas en la industria del cemento
Main Article Content
Keywords
Leyes de conservación, prueba de bola marcada, ley de desgaste, cuerpos moledores, molinos de bolas
Resumen
En este artículo se estudia un molino rotatorio continuo para la industria del cemento. Precisamente, se emplea un modelo de balance poblacional, utilizando como ecuación constitutiva una ley de desgaste constante, con el objetivo de obtener: la distribución másica de bolas en el molino, el consumo total de acero de las bolas y el flujo de entrada de bolas para la recarga del molino en el estado estacionario. La base de datos se obtuvo aplicando la prueba de bola marcada a escala industrial, en un molino de la compañía Argos S.A.
MSC: 35L65
Descargas
Referencias
[2] M. S. Powell and G. N. Nurick, “A study of charge motionin rotary mills Part 1-extension of the theory,” Minerals Engineering,vol. 9, no. 2, pp. 259–268, 1996. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0892687596000088 12
[3] F. Bond, New Equation for Calculating the Work Index from A-C closed Circuit Ball Mill Grindability Test. Allis Chalmer Publication, 1960. 13
[4] J. M. Menacho and F. J. Concha, “Mathematical model ofball wear in grinding mills II. General solution,” Powder Technology, vol. 52, no. 3, pp. 267–277, 1987. [Online]. Available: http://www.sciencedirect.com/science/article/pii/003259108780116X 13,14, 17
[5] J. Menacho and F. Concha, “Mathematical model of ball wearin grinding mills I. Zero-order wear rate,” Powder Technology,vol. 47, no. 1, pp. 87–96, 1986. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0032591086800134 13, 14,17
[6] R. Bürger, K. Karlsen, and J. Towers, “Closed-form and finite difference solutions to a population balance model of grinding mills,” Journal of Engineering Mathematics, vol. 51, no. 2, pp. 165–195, 2005. [Online].Available: http://dx.doi.org/10.1007/s10665-004-1054-4 13
[7] H. M. Hulburt and S. Katz, “Some problems in particle technology: A statistical mechanical formulation,” Chemical Engineering Science, vol. 19, no. 8, pp. 555–574, 1964. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0009250964850478 13
[8] D. Verkoeijen, G. A. Pouw, G. M. H. Meesters, and B. Scarlett, “Population balances for particulate processesâ”a volume approach,” Chemical Engineering Science, vol. 57, no. 12, pp. 2287–2303, 2002. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0009250902001185 13
[9] A. D. Randolph and M. A. Larson, “Transient and steady statesize distributions in continuous mixed suspension crystallizers,” AIChE Journal, vol. 8, no. 5, pp. 639–645, 1962. [Online]. Available:http://dx.doi.org/10.1002/aic.690080515 13
[10] D. Ramkrishna, Population Balances - Theories and Applications to Particulate Systems in Engineering. San Diego: Academic Press Inc., 2000.13
[11] M. M. Attarakih, H.-J. Bart, and N. M. Faqir, “Numerical solution of the spatially distributed population balance equation describingthe hydrodynamics of interacting liquidâ“liquid dispersions,” ChemicalEngineering Science, vol. 59, no. 12, pp. 2567–2592, 2004. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0009250904001484 14
[12] I. Rivera, F. Quintero, and O. Bustamante, “Análisis del desgaste de medios moledores de acero en un molino de bolas de la compañía Argos S.A,” Prospectiva, vol. 10, no. 1, pp. 108–112, 2012. [Online]. Available:http://dialnet.unirioja.es/servlet/articulo?codigo=4212405 14, 15, 16, 24
[13] D. W. Green, R. H. Perry, and M. J, PerryâTMs Chemical EngineerâTMsHandbook, 7th ed. New York: McGraw-Hill, 2008. 14