Despacho económico en microredes con penetración de energía renovable usando algoritmo de punto interior y restricciones lineales
Main Article Content
Keywords
energía renovable, optimización, despachos económicos, optimización heurística, MATPOWER,
Resumen
A lo largo de este artículo se muestran simulaciones de posibles despachos económicos para un sistema con penetración de energías renovables cuando hay variaciones de la velocidad del viento y de radiación solar para diferentes horas del día. Para ello se prueba y se válida una metodología para minimizar el costo total del sistema a partir del uso del método de punto interior utilizado por la función fmincon de MatLab. Uno de los aportes de este articulo, es que se propone una adaptación de las restricciones del sistema de potencia a la sintaxis de la función que requiere que estas restricciones sean lineales.
Descargas
Referencias
[2] S. Surender, P. Bijwe and A. Abhyankar, Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over Scheduling Period, IEEE Systems journal, vol. 9, no. 4, 2015.
[3] J. Hetzer, D. C. Yu and K. Bhattarai, An Economic Dispatch Model Incorporating Wind Power, IEEE Transactions on Energy Conversion, vol. 23, no. 2, 2008.
[4] E. Mojica, S. Rivera and N. Quijano (in press), Game-theoretic dispatch control in microgrids considering network losses and renewable distributed energy resources integration, IET Generation, Transmission & Distribution, 2017.
[5] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education, IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12-19, 2011.
[6] E. Hill. and W. Stevenson, An improved method of determining incemental loss factors from power systems admittances and voltages, IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 6, 1968.
[7] E. Hill. and W. Stevenson, A new method of determining loss coefficients, IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 7, 1968.
[8] M. Anumaka, Analysis of technical losses in electrical power system (Nigerian 330kV Network as a case of study), IJRRAS, vol. 21, no. 8, 2012.
[9] Y. Chang, W. Yang and C. Liu, A new method for calculating loss coefficients [of power systems], IEEE Transactions on Power Systems, vol. 9, no. 3, 1994.
[10] D. Arango, R. Urrego and S. Rivera, (in press) Robust Loss coeficients, Application to Power Systems with Solar and Wind Energy, International Journal of Power and Energy Conversion (2017).
[11] A. Stefek, Benchmarking of heuristic optimization methods, MECHATRONIKA, 2011 14th International Symposium, Trencianske Teplice, 2011.
[12] V. Miranda and R. Alves, Differential evolutionary particle swarm optimization (deepso): A successful hybrid, 11th Brazilian Congress on Computational Intelligence, 2013.
[13] L. Carvalho, F. Loureiro, J. Sumaili, H. Keko, V. Miranda, C. Marcelino, E. Wanner, Statistical tuning of DEEPSO soft constraints in the Security Constrained Optimal Power Flow problem, 2015 18th
International Conference on Intelligent System Application to Power Systems (ISAP), Porto, 2015.
[14] J. H. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, Optimal Dispatch of Electric Vehicles and Wind Power using Enhanced Particle Swarm Optimization, IEEE Transactions on Industrial Informatics,
vol. 8, Nov. 2012.
[15] J. Chen., X. Yang, L. Zhu and M. Zhang, Microgrid economic operation and research on dispatch strategy, IEEE Power engineering and automation conference (PEAM), 2012.
[16] L. Xiaoping, D. Ming, H. Jianghong, H. Pingping and P. Yali, Dynamic Economic Dispatch for Microgrids Including Battery Energy Storage, IEEE International Symposium on Power Electronics for Distributed Generation Systems, 2010.
[17] W. Gu, Z. Wu, and X. Yuan, Microgrid economic operation of the combined heat and power system with renewable energy, IEEE Power and Energy Society General Meeting, 2010.
[18] A. Ghods, F. Al Farid, S. Barman, E. Sheiki and U. Salma, Optimizing Economical Dispatch of a Microgrid in Islanding Mode, IEEE 8th International Conference on Electrical and Computer Engineering, 2014.
[19] J. Arevalo, F. Santos and S. Rivera, (in press) Uncertainty Cost Functions for Solar Photovoltaic Generation, Wind Energy Generation, and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation, International Journal of Power and Energy Conversion (2017).
[20] F. Molina, S. Pérez and S. Rivera, Uncertainty Cost Function Formulation in Small Hydropower Plants Inside a Microgrid, Ingenierías USBMed, vol. 8, no. 1, Ene-Jun 2017.
[21] Windiest day yet for ECN Cairngorms [online]. England: UK Environmental change network, 2016 Disponible en: http://www.ecn.ac.uk/news/windiest-day-yet-for-ecn-cairngorms, (2016).
[22] C. Tian P. Investigation on Frequency Distribution of Global Radiation Using Different Probability Density Functions, International Journal of Applied Science and Engineering. Chaoyang University of Technology, Taiwan 2010.