Modelado de Materiales Compuestos por Elementos Finitos usando Restricciones Cinemáticas

Main Article Content

Oscar E. Ruiz
Merlin Barschke
David Uribe
Jens Jensen
Carlos López

Keywords

materiales compuestos, restricciones geométricas, restricciones, cinemáticas

Resumen

El propósito de este artículo es presentar simulaciones del comportamiento de materiales compuestos basado en restricciones cinemáticas entre las mismas fibras y entre las fibras y la resina circundante. En la revisión de literatura, los autores han encontrado que las restricciones cinemáticas no han sido plenamente explotadas para modelar materiales compuestos, probablemente debido a su alto costo computacional. El propósito de este articulo es exponer la implementación y resultados de tal modelo, usando Análisis por Elementos Finitos de restricciones geométricas prescritas a los nodos de la resina y las fibras. Las descripciones analíticas del comportamiento de materiales compuestos raramente aparecen. Muchas aproximaciones para describir materiales compuestos en capas son basadas en la teoría de funciones C1Z y C0 Z, tal como la Teoría Clásica de Capas (CLT). Estas teorías de funciones contienen significativas simplificaciones del material, especialmente para compuestos tejidos. Una aproximación hibrida para modelar materiales compuestos con Elementos Finitos (FEA) fue desarrollada por Sidhu y Averill y adaptada por Li y Sherwood para materiales compuestos tejidos con polipropileno de vidrio.

PACS: 88.30.mj, 81.05.Lg

MSC: 65L60, 53A17

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1055 | PDF (English) Downloads 4201

Referencias

[1] R. M. J. S. Sidhu, R. C. Averill, M. Riaz and F. Pourboghrat. Finite element analysis of textile composite preform stamping. Composite Structures, ISSN 0263–8223, 52(3–4), 483–497 (2001).

[2] Xiang Li, James Sherwood, Lu Liu and Julie Chen. A material model for woven commingled glass-polypropylene composite fabrics using a hybrid finite element approach. International Journal of Materials and Product Technology, pISSN 0268–1900, eISSN 1741-5209, 21(1-2-3), 59–70 (2004).

[3] T. K. Varadan and S. Savithri. Laminated plates under uniformly distributed and concentrated loads. Journal of Applied Mechanics, ISSN 0021–8936, 59(1), 211–214 (1992).

[4] Mauricio V. Donadon, Brian G. Falzona, Lorenzo Iannuccia and John M. Hodgkinson. A 3-d micromechanical model for predicting the elastic behaviour of woven laminates. Composites Science and Technology, ISSN 0266–3538, 67(11–12), 2467–2477 (2007).

[5] K. Rohwer, S. Friedrichs and C.Wehmeyer. Analyzing Laminated Structures from Fibre-Reinforced Composite Material–An Assessment . Technische Mechanik, ISSN 0232 3869, 25(), 59–79 (2005). Referenced in 138

[6] A. Tabiei and Y. Jiang.Woven fabric composite material model with material nonlinearity for nonlinear finite element simulation. International Journal of Solids and Structures, ISSN 0020–7683, 36(18), 2757–2771 (1999).

[7] L. Li, S. M. Kim, S. H. Song, T. W. Ku, W. J. Song, J. Kim, M. K. Chong, J. W. Park and B. S. Kang. Finite element modeling and simulation for bending analysis of multi–layer printed circuit boards using woven fiber composite. Journalof Materials Processing Technology, ISSN 0924–0136, 201(1–3), 746–750 (2008).

[8] J. Cao, R. Akkerman, P. Boisse, J. Chen, H.S. Cheng, E. F. de Graaf, J. L. Gorczyca, P. Harrison, G. Hivet, J. Launay, W. Lee, L. Liud, S. V. Lomov, A. Long, E. de Luycker, F. Morestin, J. Padvoiskis, X.Q. Peng, J. Sherwood, Tz. Stoilova, X. M. Tao, I. Verpoest, A. Willems, J. Wiggers, T.X. Yu and B. Zhu. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Composites. Part A, Applied science and manufacturing, ISSN 1359–835X, 39(6), 1037–1053 (2008).

[9] Hansun Ryou, Kwansoo Chung and Woong-Ryeol Yu. Constitutive modeling of woven composites considering asymmetric/anisotropic, rate dependent, and nonlinear behavior. Composites. Part A, Applied science and manufacturing, ISSN 1359–835X, 38(12), 2500–2510 (2007).

[10] Isidor M. Djordjevic, Daniela R. Sekult and Momcilo M. Stevanovi. Non-linear elastic behaviour of carbon fibres of different structural and mechanical characteristic.Journal of the Serbian Chemical Society, ISSN 0352–5139, 72(5), 513–521 (2007).

[11] Ji Hoon Kim, Lee Myoung-Gyu, Ryou Hansun, Chung Kwansoo, Jae Ryoun Youn and Tae Jin Kang. Development of nonlinear constitutive laws for anisotropic and asymmetric fiber reinforced composites. Polymer Composites, ISSN 0272–8397, 29(2), 216–228 (2008).

[12] Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining Guo and Heung-Yeung Shum. Mesh quilting for geometric texture synthesis. ACM Transactions on Graphics (TOG), ISSN 0730–0301, 25(3), 690–697 (2006).

[13] Documentation for ANSYS, 11.0 edition, 2007.