Caracterización, identificación y localización de huecos de tensión: revisión del estado del arte

Main Article Content

Jairo Blanco Solano https://orcid.org/0000-0003-4058-0989
Johann F Petit Suárez https://orcid.org/0000-0003-2283-3268
Gabriel Ordoñez Plata https://orcid.org/0000-0002-2772-4362
Víctor Barrera Núñez

Keywords

calidad de la energía, hueco de tensión, descriptores, causas de huecos de tensión, localización relativa, localización exacta.

Resumen

En este artículo se presenta una revisión del estado del arte de la caracterización, identificación y localización de los huecos de tensión. Los métodos presentados son el producto de diferentes análisis aplicados a la perturbación electromagnética, específicamente a las formas de onda de tensión y corriente, donde basándose en la teoría de circuitos eléctricos, transitorios electromagnéticos y el conocimiento del fenómeno se proponen atributos y descriptores que permiten caracterizar las perturbaciones de acuerdo a cierta característica de interés. Se hace una revisión tanto de caracterizaciones básicas como de metodologías que integran clasificadores y descriptores más complejos. Se hace énfasis en los métodos de caracterización, junto con sus atributos y descriptores, incluyendo sus limitantes y posibles mejoras. De acuerdo al nivel de desarrollo encontrado en estos estudios, resulta la necesidad de nuevas metodologías que integren módulos de caracterización, de diagnóstico de causas, de localización, de valoración y módulos de extracción de información y/o conocimiento, con la intención de orientarlo a una herramienta para la gestión automática de perturbaciones del sistema eléctrico.

PACS: 84.37.+q, 88.80.H-

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1737 | PDF Downloads 545

Referencias

[1] D. Chapman. The Cost of Poor Power Quality, Power Quality Aplication Guide, 1–4 (2001).

[2] JY. Chan, JV. Milanovic. Methodology for Assessment of Financial Losses due to Voltage Sags and Short Interruptions. 9th International Conference onElectrical Power Quality and Utilization, 1–6 (Barcelona-2007).

[3] A. Baggini. Handbook of Power Quality, Jhon Wiley and Sons, Ltda, Cap´ıtulos 4 y 18, ISBN 0470065613. 2008.

[4] JV. Milanovic, CP. Gupta. Probabilistic Assessment of Financial Losses Due to Interruptions and Voltage Sags- Part I: The Methodology, IEEE Transactions on Power Delivery, ISSN 0885-8977, 918–924 (2006).

[5] J. Wang, S. Chen, T. Lie. Estimating Economic Impact of Voltage Sags. International Conference on Power System Technology, POWERCON, ISBN 0-7803-8610-8, 350–355 (New York-2004).

[6] KJ. Cornicky, HQ. Li. Power Quality and Voltage Dips, 5th International Conference on Advances in Power System Control, Operation and Management, APSCOM, ISBN 0-85296-791-8, 149–156 (Hong Kong-2000).

[7] MHJ. Bollen. Understanding Power Quality Problems:Voltage Sag and Interruptions Wiley-IEEE Press, 1 edition, ISBN 978-0780347137, 2000.

[8] IEEE 1159-1995. Recommended Practice of Monitoring Electric Power Quality, 1995.

[9] G. Lv, X. Wang. Voltage Sags Detection and Identification Based On Phase- Shift And RBF Neural Network, 4th International Conference on Fuzzy Systems and Knowledge Discovery, ISBN 978-0-7695-2874-8, 684–688 (2007).

[10] S. Djokic, J. Milanovic, S. Rowland. Advanced Voltage Sag Characterization II: Point of Wave, Generation, Transmission & Distribution, IET,ISBN 1751-8687, 146–154 (2007).

[11] SZ. Djokic, J. Milanovic. Advanced Voltage Sag Characterization. Part I: Phase Shift , Generation, Transmission and Distribution, IEEE Proceedings, ISBN 1350-2360, 423–430 (2006).

[12] MHJ. Bollen, L. Zhang. Characteristic of Voltage Dips (Sags) in Power, System IEEE Transactions on Power Delivery, ISSN 0885-8977, 827–832 (2000).

[13] MHJ. Bollen, L. Zhang. A Method for Characterisation of Three-Phase Unbalanced Dips from Recorded Voltage Waveshapes, IEEE Telecommunications Energy Conference, ISBN 0-7803-5624-1, 1–9 (1999). Referenciado en 195

[14] MHJ. Bollen. Algorithms for Characterizing Measured Three-Phase Unbalanced Voltage Dips, IEEE Transactions on Power Delivery, ISSN 0885-8977, 937–944 (2003).

[15] V. Ignatova, P. Granjon, S. Bacha, F. Dumas. Classification and Characterization of Three Phase Voltage Dips by Space Vector Methodology, Future Power Systems, 2005 International Conference on, ISBN 90-78205-02-4, 1–6 (2005).

[16] V. Ignatova, P. Granjon, S. Bacha, F. Dumas. A Contribution of Characterizing Measured Three–Phase Unbalanced Voltage Sags Algorithm, IEEE Transactions on Power Delivery, ISSN 0885-8977, 1885–1890 (2007).

[17] MHJ. Bollen. Characterization of Voltage Sags Experienced by Three-Phase Adjustable Speed Drives, IEEE Transactions on Power Delivery, ISSN 0885- 8977, 1666–1671 (1997).

[18] MT. Aung, J. Milanovic. The Influence of Transformer Winding Connections on the Propagation of Voltage Sags, IEEE Transactions on Power Delivery, ISSN 0885-8977, 262–269 (2006).

[19] PGV. Axelberg, I. Yu-Hua Gu, MHJ. Bollen. Support Vector Machine for Classification of Voltage Disturbance. IEEE Transactions on Power Delivery, ISSN 0885-8977, 1297–1303 (2007).

[20] P. Janik, T. Lobos. Automated Classification of Power-Quality Disturbances Using SVM and RBF Networks, IEEE Transactions on Power Delivery, ISSN 0885-8977, 1663–1669 (2006).

[21] MHJ. Bollen, I. Yu-Hua Gu, P. Axelberg, E. Styvaktakis. Classification of Underlying Causes of Power Quality Disturbances: Deterministic versus Statistical Methods, EURASIP Journal on Advances in Signal Processing, ISSN 1687-6180, 1–17 (2007).

[22] V. Vega García. Detección y Clasificación Automática de Perturbaciones que afectan la Calidad de la Energía Eléctrica, Tesis de Maestría de Ingeniería Eléctrica, Dir. C. Duarte y G. Ordoñez,Universidad Industrial de Santander, (2007).

[23] MHJ. Bollen, E. Styvaktakis, I. Yu-Hua Gu. Analysis of Voltage Dips for Event Identification, Power Quality: Monitoring and Solutions (Ref. No. 2000/136), IEE Seminar on, 1–4 (2000).

[24] MHJ. Bollen, E. Styvaktakis, I. Yu-Hua Gu. Classification of Power Systems Events: Voltage Dips, Harmonics and Quality of Power. Proceedings. Ninth International Conference on, ISBN 0 7803-6499-6, 745–750 (2000).

[25] S-J. Ahn, D-J. Won, D-Y. Chung, S. Moon. Determination of the Relative Location of Voltage Sag Source According to Event Cause, Power Engineering Society General Meeting. IEEE, ISBN 0-7803-8465-2, 620–625 (2004).

[26] K. Kim, J. Park, J. Lee, S. Ahn, S. Moon. A Method to Determine the Relative Location of Voltage Sag Source for PQ Diagnosis, IEEE Proceedings of the Eighth International Conference on Electrical Machines and Systems, ISBN 7-5062-7407-8, 2192–2197 (2005).

[27] K. Yao, D. Koval, W. Su, J. Salmon Modelling Consumer Voltage Sags by Distribution Primary Faults. Electrical and Computer Engineering, IEEE Canadian Conference on, ISSN 0840-7789, 1277–1282 (1999).

[28] MF. McGranaghan, DR. Mueller, MJ. Samotyj. Voltage Sags in Industrial Systems, Industry Applications, IEEE Transactions on, ISSN 0093-9994, 397–403 (1993).

[29] G. Yalginkaya, MHJ. Bollen, PA. Crossley. Characterization of Voltage Sags in Industrial Distribution Systems, Industry Applications, IEEE Transactions on, ISSN 0093-9994, 682–688 (1998).

[30] MHJ. Bollen, M. Hager, C. Roxenius. Effect of Induction Motors and Other Loads on Voltage Dips: Theory and Measurements, Power Tech Conference Proceedings, ISBN 0-7803-7967-5, 1–6 (2003).

[31] L. Guasch, F. Córcoles. Effects of Voltage Sags on Induction Machines and Three-Phase Transformers, PHD thesis. Universidad de Catalunya, ISBN 978-3-8465-6795-1,(2006).

[32] MHJ. Bollen. The Influence of Motor Re-acceleration on Voltage Sags, Industry Applications, IEEE Transactions on, ISSN 0093-9994, 667–674 (1995).

[33] P. Ling, A. Basak. Investigation of Magnetizing Inrush Current in Single-phase Transformer , Magnetics, IEEE Transactions on, ISSN 0018-9464, 3217–3222 (1998).

[34] K. Smith, L. Ran, B. Leyman. Analysis of Transformer Inrush Transients in offshore Electrical Systems, Generation, Transmission and Distribution, IEEE Proceedings, ISSN 1350-2360, 89–95 (1999).

[35] CE. Lin, CL. Cheng, CL. Huang, JC. Yeh. Investigation of Magnetizing Simulation Inrush Current in Transformers. Part I: Numerical , Power Delivery, IEEE Transactions on, ISSN 0885 8977, 246–254 (1993).

[36] JE. Holcomb. Distribution Transformer Magnetizing Inrush Current , Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, ISSN 0018-9510, 697–702 (1961).

[37] S. Santoso, WM. Grady, EJ. Powers, J. Lamoree, SC. Bhatt. Characterization of Distribution Power Quality Event with Fourier and Wavelet Transforms, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 247–254 (2000).

[38] S. Santoso, JD. Lamoree, MF. McGranaghan. Signature Analysis to Track Capacitor Switching Performance, Transmission and Distribution Conference and Exposition, IEEE/PES, ISBN 0-7803-7285-9, 259–263 (2001).

[39] K. Hur, S. Santoso. On Two Fundamentals Signatures for Determining the relative location of Switched Capacitor Banks, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 1105–1112 (2008).

[40] CJ. Santos, D. Courvy, M. Tavares, M. Oleskoviccz. An ATP Simulation of Shunt Capacitor Switching in an Electrical Distribution System, Dept. of Electrical Engineering, University of Sao Paulo, 1–7 (2001).

[41] H. Khani, M. Moallem, S. Sadri. On Tracking and Finding the Location of Switched Capacitor Banks in Distribution Systems, Transmission & Distribution Conference & Exposition: Asia and Pacific, ISBN 978-1-4244-5230-9, 1–4 (2009).

[42] H. Khani, M. Moallem, S. Sadri, M. Dolatshahi. A New Method for Online Determination of the Location of Switched Capacitor Banks in Distribution, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 341–351 (2011).

[43] H. Khani, M. Moallem, S. Sadri. A Novel Algorithm for Determining the Exact Location of Switched Capacitor Banks in Distribution Systems, Transmission & Distribution Conference & Exposition: Asia and Pacific, ISBN 978-1-4244-5230- 9, 1–4 (2009).

[44] B. Noshad, M. Keramatzadeh, M. Saniei. Finding the Location of Switched Capacitor Banks in Distribution Systems based on Wavelet Transform. Universities Power Engineering Conference (UPEC), 45th International, ISBN 978-1-4244-7667-1, 1–5 (2010).

[45] Y. Hong, B. Chen. Locating Switched Capacitor Using Wavelet Transform and Hybrid Principal Component Analysis Network. Power Delivery, IEEE Transactions on, ISSN 0885-8977, 1145–1152 (2007).

[46] YJ. Shin, EJ Powers, WM. Grady, A. Arapostathis. Signal Processing-Based Direction Finder for Transient Capacitor Switching Disturbances, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 2555– 2562 (2008).

[47] M. Kezunovic. Automated Analysis of Voltage Sags, Their Causes and Impacts, Power Engineering Society Summer Meeting, ISBN 0-7803-7173-9, 1113–1117 (2001).

[48] E. Styvaktakis, MHJ. Bollen, I. Yu-Hua Gu. Expert Systems for Voltage Dip Classification and Analysis, Power Engineering Society Summer Meeting, ISBN 0-7803-7173-9, 671–676 (2001).

[49] D. Ning, C. Wei, S. Juan, W. Jianwei, X. Yonghai. Voltage Sag Disturbance Detection Based on RMS Voltage Method, Power and Energy Engineering Conference. APPEEC, Asia-Pacific, ISBN 978-1-4244-2486-3, 1–4 (2009).

[50] A. Tompson. An Accurate Fault Classification Technique for Power System Monitoring Devices, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 684–690 (2002).

[51] O. Youssef. Fault Classification Based On Wavelet Transform, Transmission and Distribution Conference and Exposition, IEEE/PES, ISBN 0-7803-7285-9, 531–536 (2001).

[52] MHJ. Bollen, E. Styvaktakis. Signatures of Voltage Dips: Transformer Saturation and Multistage Dips, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 265–270 (2003).

[53] V. Barrera, J. Mel´endez, S. Herraiz Evaluation of Fault Relative Location Algorithms using Voltage Sag Data Collected at 25-kV Substations, Special Issue on Power Quality, European Transactions on Electrical Power (ETEP), 34–51 (2009).

[54] T. Tayjasanant, Ch. Li, W. Xu. A Resistance Sign-Based Method for Voltage Sag Source Detection, Power Delivery, IEEE Transactions on,ISSN 0885-8977, 2544–2551 (2005).

[55] J. Mora, V. Barrera, G. Carrillo. Fault Location in Power Distribution Systems Using a Learning Algorithm for Multivariable Data Analysis, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 1715–1721 (2007).

[56] H. Mokhlis, AR. Khalid, HY. Li. Voltage Sags Pattern Recognition Technique for Fault Section Identification in Distribution Networks, PowerTech, IEEE Bucharest, ISBN 978-1-4244-2234-0, 1–6 (2009).

[57] YY Hsu, FC. Lu, Y. Chien, JP. Liu, JT Lin, PHS. Yu, RT. Kuo. An Expert System for Locating Distribution System Faults, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 366–372 (1999).

[58] P. Jarventausta, P. Verho, J. Partanen. Using Fuzzy Sets to Model the Uncertainty in the Fault Location Process of Distribution Networks, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 954–960 (1994).

[59] H-T. Yang, W-Y. Chang, Ch-L. Huang. A New Neural Networks Approach to on-line Fault Section Estimation Using Information of Protective Relays and Circuit Breakers, Power Delivery, IEEE Transactions on, ISSN 0885-8977, 220–230 (1994).

Artículos más leídos del mismo autor/a