A Guide to Study Iron Oxide Magnetic Nanoparticles with Biomedical Applications. Part II

Main Article Content

Diego F Coral http://orcid.org/0000-0001-7078-2368
Jenny A Mera http://orcid.org/0000-0003-0925-4317

Keywords

Cancer, heat dissipation, magnetic hyperthermia, magnetic nanoparticles, iron oxides

Abstract

In this second part, the magnetic nanoparticles characterization is studied, doing special emphasys in the properties interpretation in order to define the nanosystems applications. In the case of the iron oxide magnetic nanoparticles, the influence of its properties in the heat dissipation under radiofrequency fields is analyzed, this answer is usefull in the cancer treatment by magnetic hyperthermia. In the magnetic hyperthermia treatment, particles absorb energy from a radio frequency magnetic field and dissipate it as heat. For in-vivo test and human assays, frequency ranges between 50 and 1000 kHz and field amplitudes ranges between 5 and 150 kHz are usually used. The main properties, such as magnetization, interactions between particles and particles structuring are studied using experimental data, computational simulations and suitable models for each case studied in the part I of this article. Finally, a correlation
between these properties with heat dissipation, measured by calorimetric methods, which is the merit parameter to quantify the electromagnetic energy transduction into heat, is pointed out. 

Downloads

Download data is not yet available.
Abstract 390 | PDF (Español) Downloads 155

References

[1] J. Lin, Z. Pan, L. Song, Y. Zhang, Y. Li, Z. Hou, and C. Lin, “Design and in vitro evaluation of self-assembled indometacin prodrug nanoparticles for sustained/controlled release and reduced normal cell toxicity,” Applied Surface Science, vol. 425, pp. 674 – 681, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S016943321732024X

[2] Z. Nemati, S. Salili, J. Alonso, A. Ataie, R. Das, M. Phan, and H. Srikanth, “Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: Does size matter?” Journal of Alloys and Compounds, vol. 714, pp. 709 – 714, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0925838817314068

[3] A. Sood, V. Arora, J. Shah, R. Kotnala, and T. K. Jain, “Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications,” Materials Science and Engineering: C, vol. 80, pp. 274 – 281, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0928493116324067

[4] J.-Q. Tang, X.-Y. Hou, C.-S. Yang, Y.-X. Li, Y. Xin, W.-W. Guo, Z.-P. Wei, Y.-Q. Liu, and G. Jiang, “Recent developments in nanomedicine for melanoma treatment,” International Journal of Cancer, vol. 141, no. 4, pp. 646–653, 2017. [Online]. Available: http://dx.doi.org/10.1002/ijc.30708

[5] C. Strehl, L. Maurizi, T. Gaber, P. Hoff, T. Broschard, A. R. Poole, H. Hofmann, and F. Buttgereit, “Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans,” International Journal of Nanomedicine, vol. 11, pp. 5883–5896, 2016. [Online]. Available: http://dx.doi.org/10.2147/IJN.S110579

[6] A. K. Silva, A. Nicolas-Boluda, L. Fouassier, and F. Gazeau, “Overcoming the tumor microenvironment: the role of nanohyperthermia,” Nanomedicine, vol. 12, no. 11, pp. 1213–1215, 2017. [Online]. Available: https: //doi.org/10.2217/nnm-2017-0096

[7] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, “Monodisperse mfe2o4 (m = fe, co, mn) nanoparticles,” Journal of the American Chemical Society, vol. 126, no. 1, pp. 273–279, 2004, pMID: 14709092. [Online]. Available: http://dx.doi.org/10.1021/ja0380852

[8] A. G. Roca, M. P. Morales, K. O’Grady, and C. J. Serna, “Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors,” Nanotechnology, vol. 17, no. 11, p. 2783, 2006. [Online]. Available: http://stacks.iop.org/0957-4484/ 17/i=11/a=010

[9] T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, S. Chen, Z. Xu, D. Shi, J. Li, and H. Gao, “Highly ordered self-assembly with large area of fe3o4 nanoparticles and the magnetic properties,” The Journal of Physical Chemistry B, vol. 109, no. 49, pp. 23233–23236, 2005, pMID: 16375287. [Online]. Available: http://dx.doi.org/10.1021/jp054291f

[10] T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, “Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process,” Journal of the American Chemical Society, vol. 123, no. 51, pp. 12798–12801, 2001, pMID: 11749537. [Online]. Available: http://dx.doi.org/10.1021/ja016812s

[11] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. GonzálezCarreño, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D: Applied Physics, vol. 36, no. 13, p. R182, 2003. [Online]. Available: http://stacks.iop.org/0022-3727/ 36/i=13/a=202

[12] N. R. Jana, Y. Chen, and X. Peng, “Size- and shape-controlled magnetic (cr, mn, fe, co, ni) oxide nanocrystals via a simple and general approach,” Chemistry of Materials, vol. 16, no. 20, pp. 3931–3935, 2004. [Online]. Available: http://dx.doi.org/10.1021/cm049221k

[13] P. D. Cozzoli, E. Snoeck, M. A. Garcia, C. Giannini, A. Guagliardi, A. Cervellino, F. Gozzo, A. Hernando, K. Achterhold, N. Ciobanu, F. G. Parak, R. Cingolani, and L. Manna, “Colloidal synthesis and characterization of tetrapod-shaped magnetic nanocrystals,” Nano Letters, vol. 6, no. 9, pp. 1966–1972, 2006. [Online]. Available: http://dx.doi.org/10.1021/nl061112c

[14] C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM Journal of Research and Development, vol. 45, no. 1, pp. 47–56, Jan 2001.

[15] J. Cheon, N.-J. Kang, S.-M. Lee, J.-H. Lee, J.-H. Yoon, and S. J. Oh, “Shape evolution of single-crystalline iron oxide nanocrystals,” Journal of the American Chemical Society, vol. 126, no. 7, pp. 1950–1951, 2004, pMID: 14971924. [Online]. Available: http://dx.doi.org/10.1021/ja038722o

[16] D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” Journal of the American Chemical Society, vol. 127, no. 14, pp. 4990–4991, 2005, pMID: 15810812. [Online]. Available: http://dx.doi.org/10.1021/ja0428863

[17] T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, and W. J. Parak, “Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals,” Nano Letters, vol. 4, no. 4, pp. 703–707, 2004. [Online]. Available: http://dx.doi.org/10.1021/nl035172j

[18] B. BITTOVA, J. P. VEJPRAVOVA, M. P. DEL MORALES, A. G. ROCA, D. NIZNANSKY, and A. MANTLIKOVA, “Influence of aggregate coating on relaxations in the systems of iron oxide nanoparticles,” Nano, vol. 07, no. 01, p. 1250004, 2012. [Online]. Available: http: //www.worldscientific.com/doi/abs/10.1142/S179329201250004X

[19] I. Nedkov, T. Merodiiska, L. Slavov, R. Vandenberghe, Y. Kusano, and J. Takada, “Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation,” Journal of Magnetism and Magnetic Materials, vol. 300, no. 2, pp. 358 – 367, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304885305005433

[20] K. Tao, H. Dou, and K. Sun, “Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 320, no. 1-3, pp. 115 – 122, 2008. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0927775708000721

[21] T. J. Daou, G. Pourroy, S. Bégin-Colin, J. M. Grenèche, C. Ulhaq-Bouillet, P. Legaré, P. Bernhardt, C. Leuvrey, and G. Rogez, “Hydrothermal synthesis of monodisperse magnetite nanoparticles,” Chemistry of Materials, vol. 18, no. 18, pp. 4399–4404, 2006. [Online]. Available: http://dx.doi.org/10.1021/ cm060805r

[22] D. Kim, S. Lee, K. Im, K. Kim, K. Kim, I. Shim, M. Lee, and Y.-K. Lee, “Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies,” Current Applied Physics, vol. 6, Supplement 1, pp. e242 – e246, 2006, nano Korea 2005 Symposium Nano Korea 2005 Symposium. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1567173906000496

[23] R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Transactions on Magnetics, vol. 17, no. 2, pp. 1247–1248, Mar 1981.

[24] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, “Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications,” Chemical Reviews, vol. 108, no. 6, pp. 2064–2110, 2008, pMID: 18543879. [Online]. Available: http://dx.doi.org/10.1021/cr068445e

[25] D. C. Lee, D. K. Smith, A. T. Heitsch, and B. A. Korgel, “Colloidal magnetic nanocrystals: synthesis, properties and applications,” Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., vol. 103, pp. 351–402, 2007. [Online]. Available: http://dx.doi.org/10.1039/B605630J

[26] M.E.Fleet,“Thestructureofmagnetite:Symmetryofcubicspinels,” Journal of Solid State Chemistry, vol. 62, no. 1, pp. 75 – 82, 1986. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0022459686902185

[27] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. a. Persson, “The Materials Project: A materials genome approach to accelerating materials innovation,” APLMaterials,vol.1,no.1,p.011002,2013.[Online].Available: http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi

[28] G. F. Goya, T. S. Berquó, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” Journal of Applied Physics, vol. 94, no. 5, pp. 3520–3528, 2003. [Online]. Available: http://dx.doi.org/10.1063/1.1599959

[29] M. Khalkhali, K. Rostamizadeh, S. Sadighian, F. Khoeini, M. Naghibi, and M. Hamidi, “The impact of polymer coatings on magnetite nanoparticles performance as mri contrast agents: a comparative study,” DARU Journal of Pharmaceutical Sciences, vol. 23, no. 1, p. 45, 2015. [Online]. Available: http://dx.doi.org/10.1186/s40199-015-0124-7

[30] K. Persson, “Materials data on fe3o4 (sg:227) by materials project,” Jan 2015. [Online]. Available: http://www.osti.gov/dataexplorer/servlets/purl/ 1194194

[31] G. K. Rozenberg, Y. Amiel, W. M. Xu, M. P. Pasternak, R. Jeanloz, M. Hanfland, and R. D. Taylor, “Structural characterization of temperatureand pressure-induced inverse↔normal spinel transformation in magnetite,”Phys. Rev. B, vol. 75, p. 020102, Jan 2007. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.75.020102

[32] F. Walz, “The verwey transition - a topical review,” Journal of Physics: Condensed Matter, vol. 14, no. 12, p. R285, 2002. [Online]. Available: http://stacks.iop.org/0953-8984/14/i=12/a=203

[33] S. Sun and H. Zeng, “Size-controlled synthesis of magnetite nanoparticles,” Journal of the American Chemical Society, vol. 124, no. 28, pp. 8204–8205, 2002, pMID: 12105897. [Online]. Available: http://dx.doi.org/10.1021/ ja026501x

[34] D. W. SCHAEFER, “Polymers, fractals, and ceramic materials,” Science, vol. 243, no. 4894, pp. 1023–1027, 1989. [Online]. Available: http: //science.sciencemag.org/content/243/4894/1023

[35] E. S. Gonçalves, D. R. Cornejo, C. L. P. Oliveira, A. M. Figueiredo Neto, J. Depeyrot, F. A. Tourinho, and R. Aquino, “Magnetic and structural study of electric double-layered ferrofluid with mnfe2o4@γ−fe2o3 nanoparticles of different mean diameters: Determination of the magnetic correlation distance,” Phys. Rev. E, vol. 91, p. 042317, Apr 2015. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.91.042317

[36] T. Freltoft, J. K. Kjems, and S. K. Sinha, “Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering,” Phys. Rev. B, vol. 33, pp. 269–275, Jan 1986. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.33.269

[37] S.-H. Chen and J. Teixeira, “Structure and fractal dimension of proteindetergent complexes,” Phys. Rev. Lett., vol. 57, pp. 2583–2586, Nov 1986. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.57.2583

[38] A. Guinier and G. Fournet, Small-angle scattering of X-rays, ser. Structure of matter series. Wiley, 1955.

[39] Z. Zhou, Z. Zhao, H. Zhang, Z. Wang, X. Chen, R. Wang, Z. Chen, and J. Gao, “Interplay between longitudinal and transverse contrasts in fe3o4 nanoplates with (111) exposed surfaces,” ACS Nano, vol. 8, no. 8, pp. 7976–7985, 2014, pMID: 25093532. [Online]. Available: http://dx.doi.org/10.1021/nn5038652

[40] H. Yang, T. Ogawa, D. Hasegawa, and M. Takahashi, “Synthesis and magnetic properties of monodisperse magnetite nanocubes,” Journal of Applied Physics, vol. 103, no. 7, p. 07D526, 2008. [Online]. Available: http://dx.doi.org/10.1063/1.2833820

[41] D. F. Coral and J. Mera, “Una guía para el estudio de nanopartículas magnéticas de óxidos de hierro con aplicaciones biomédicas. Parte I,” Ingeniería y Ciencia - ing.cienc., vol. 13, no. 25, pp. 229–249, 2017.

[42] R. Rosensweig, “Heating magnetic fluid with alternating magnetic field,” Journal of Magnetism and Magnetic Materials, vol. 252, pp. 370 – 374, 2002, proceedings of the 9th International Conference on Magnetic Fluids. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0304885302007060

[43] F. Tournus and E. Bonet, “Magnetic susceptibility curves of a nanoparticle assembly, i: Theoretical model and analytical expressions for a single magnetic anisotropy energy,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 9, pp. 1109 – 1117, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304885310008401

[44] F. Tournus and A. Tamion, “Magnetic susceptibility curves of a nanoparticle assembly ii. simulation and analysis of zfc/fc curves in the case of a magnetic anisotropy energy distribution,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 9, pp. 1118 – 1127, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304885310008413

[45] D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-Fesenko, M. Marciello, M. d. P. Morales, D. Baldomir, and C. Martinez-Boubeta, “Multiplying magnetic hyperthermia response by nanoparticle assembling,” The Journal of Physical Chemistry C, vol. 118, no. 11, pp. 5927–5934, 2014. [Online]. Available: http://dx.doi.org/10.1021/jp410717m