Methodology for 3D reconstruction of craniofacial structures and their use in the finite element method

Main Article Content

Juan Felipe Isaza
Santiago Correa

Keywords

finite element analysis, bioengineering, Craniofacial, biomedical images, geometric modeling, cloud points, 3D reconstruction.

Abstract

This paper describes a 3D reconstruction methodology used for anatomical structures conformed by soft and hard tissues. This technique uses biomed-
ical images as input in applications where a further Finite Element Method (FEM) bioengineering modeling is required. A biomedical image processing software in DICOM (Digital Imaging Standard for Medical Images) was developed using C language. This software provides the cloud of points of the anatomic structure in order to reconstruct and optimize the surfaces which
finally form a solid which can be exported to the software ANSYS 10.0r. Geometric modeling software as ProENGINEER WILDFIRE 3.0r and GID 8.0r were also used in the modeling process. Anatomical structures like jaw, temporal bone and some dental pieces were successfully reconstructed maintaining their anatomical characteristics and obtaining geometric models that
allowed biomechanical simulations by FEM. The method proposed improved the ability to geometrically model in an accurate way the structures studied.
Furthermore, this application enabled to perform a biomedical application without simplifications as ambition of cancellous bone and inadequate alloca-
tion of mandibular properties which could affect the final results of the FEM predictions. Although the validation of the results was conducted on ortho-
dontic device, the developed methodology could be applied to the evaluation of other problems involving different anatomical structures. 

Downloads

Download data is not yet available.
Abstract 1155 | PDF (Español) Downloads 590

References

[1] R. N. J. Graham, R.W. Perriss, A. F. Scarsbrook. DICOM demystified: a review of digital file formats and their use in radiological practice. Clinical radiology, ISSN 0009–9260, 60(11), 1133–1140 (2005).

[2] M. Defrise. A short reader’s guide to 3D tomographic reconstruction. Computerized Medical Imaging and Graphics, ISSN 0895–6111, 25(2), 113–116 (2001).

[3] Y. Watanabe, R. Ikegami, K. Takasu and K. Mori. Three–dimensional compu- ted tomographic images of pelvic muscle in anorectal malformations. Journal of Pediatric Surgery, ISSN 0022–3468, 40(12), 1931–1934 (2005).

[4] Y. Kang, K. Engelke, C. Fuchs and W. A. Kalender. An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Computerized Medical Imaging and Graphics, ISSN 0895–6111, 29(7), 533–541 (2005).

[5] P. Claes, D. Vandermeulen, S. de Greef, G. Willems and P. Suetens. Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: Methodology and validation. Forensic Science International, ISSN 03790738, 159(1), S147–S158 (2006).

[6] Radiological Society of North America (RSNA). Handbook of Teleradiology Ap- plications. RSNA IPC Communication Services, Michigan: 1997.

[7] Z. Zhong, S.Wei, J.Wang, C. Feng, C. Chen and C. Yu. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Medical Engineering and Physics, ISSN 1350–4533, 28(1), 90–98 (2006).

[8] Z. L. Wang, J. C. M. Teo, C. K. Chui, S. H. Ong, C. H. Yan and S. C. Wang. Computational biomechanical modelling of the lumbar spine using marching–cubes surface smoothened finite element voxel meshing. Computer Methods and Programs in Biomedicine, ISSN 0169–2607, 80(1), 25–35 (2005).

[9] P. Ausiello, A. Apicella and C. L. Davidson. Effect of adhesive layer properties on stress distribution in composite restorations – A 3D finite element analysis. Dental Materials, ISSN 0109–5641, 18(4), 295–303 (2002).

[10] S. Schutte, S. P. W. Van Den Bedem, F. Van Keulen, F. C. T. Van Der Helm and H. J. A. Simonsz. A finite–element analysis model of orbital biomechanics. Vision Research, ISSN 0042–6989, 46(11), 1724–1731 (2006).

[11] W. A. Brekelmans, H. W. Poort and T. J. Slooff. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthopaedica Scandinavica, ISSN 0001–6470, 43(5), 301–317 (1972).

[12] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, Volume 1, The Basis (Finite Element Method Ser), ISBN 0750650494. Butterworth–Heinemann, 2000.

[13] R. L. Taylor, J. C. Simo, O. C. Zienkiewicz and A. C. H. Chan. The patch test a condition for assessing FEM convergence. International Journal for Numerical Methods in Engineering, ISSN 0029–5981, 22(1), 39–62 (1986).

[14] J. K. Bathe. Finite Element Procedures in Engineering Analysis, ISBN 0–13– 317305–4. New Jersey: Prentice Hall, 1982.

[15] D. Remmler, L. Olson, R. Ekstrom, D. Duke, A. Matamoros and D. Matthews. Pre–surgical CT/FEA for craniofacial distraction: I. methodology, development, and validation of the cranial finite element model . Medical Engineering and Physics, ISSN 1350–4533, 20(8), 607–619 (1998).

[16] T. Nagasao, M. Kobayashi, Y. Tsuchiya, T. Kaneko and T. Nakajima. Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. Journal of Cranio–Maxillofacial Surgery, ISSN 1010–5182, 30(3), 170–177 (2002).

[17] E. Tanaka, D. P. Rodrigo,M. Tanaka, A. Kawaguchi, T. Shibazaki and K. Tanne. Stress analysis in the TMJ during jaw opening by use of a three–dimensional finite element model based on magnetic resonance images. International Journal of Oral and Maxillofacial Surgery, ISSN 0901–5027, 30(5), 421–430 (2001).

[18] J. Chen, U. Akyuz, L. Xu and R. M. V. Pidaparti. Stress analysis of the hu- man temporomandibular joint . Medical Engineering and Physics, ISSN 1350– 4533, 20(8), 565–572 (1998).

[19] M. Beek, J. H. Koolstra, L. J. Van Ruijven and T. M. G. J. Van Eijden. Three– dimensional finite element analysis of the human temporomandibular joint disc. Journal of Biomechanics, ISSN 0021–9290, 33(3), 307–316 (2000).

[20] A. Pérez del Palomar and M. Doblaré. Finite element analysis of the temporo- mandibular joint during lateral excursions of the mandible. Journal of Biomechanics, ISSN 0021–9290, 39(12), 2153–2163 (2006).

[21] D. Lacroix, A. Chateau, M. Ginebra and J. A. Planell. Micro–finite element mo- dels of bone tissue–engineering scaffolds. Biomaterials, ISSN 0142–9612, 27(30), 5326–5334 (2006).

[22] P. Magne. Efficient 3D finite element analysis of dental restorative procedures using micro–CT data. Dental Materials, ISSN 0109–5641, 23(5), 539–548 (2007).

[23] J. P. Okeson. Management of temporomandibular disorders and occlusion, ISBN 9780323046145. St. Louis: Mosby, 2007.

[24] C. L. Schwartz–Dabney and P. C. Dechow. Variations in cortical material pro- perties throughout the human dentate mandible. American Journal of Physical Anthropology, ISSN 0002–9483, 120(3), 252–277 (2003).

[25] Y. Tie, D. M. Wang, T. Ji, C. T. Wang and C. P. Zhang. Three–dimensional finite–element analysis investigating the biomechanical effects of human mandibular reconstruction with autogenous bone grafts. Journal of Cranio–Maxillofacial Surgery, ISSN 1010–5182, 34(5), 290–298 (2006).

[26] J. F. Isaza, S. Correa and J. E. Congote. Metodología para la reconstrucción 3D de estructuras craneofaciales y su aplicación en el método de elementos finitos. En C. Muller–Karger, S.Wong, A. La Cruz. (Eds). IFMBE Proceedings : IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health. Alemania: Springer Berlin Heidelberg. ISBN 978–3–540– 74470–2, 18(7), 766–769 (2007).

[27] E. Nolf. XMedCon–An open–source medical image conversion toolkit . European Journal of Nuclear Medicine, ISSN 0340–6997, 30(2), 246 (2003).

[28] R. M. Haralick and L. G. Shapiro. Image segmentation techniques. Computer Vision, Graphics, & Image Processing, ISSN 0734–189X, 29(1), 100–132 (1985).

[29] J. S. Weszka. Survey of threshold selection techniques. Computer Graphics and Image Processing, ISSN 0146–664X, 7(2), 259–265 (1978).

[30] N. Alajlan, M. Kamel and E. Jernigan. Detail preserving impulsive noise removal. Signal Processing: Image Communication, ISSN 0923–5965 19(10), 993–1003 (2004).

[31] T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer Vision, Graphics, & Image Processing, ISSN 0734–189X, 48(3), 357–393 (1989).

[32] J. Robinson. Basic and Shape Sensitivity Tests for Membrane and Plate Bending Finite Elements, Robinson and Associates, 1985.

[33] J. P. Joho. The effects of extraoral low–pull traction to the mandibular dentition of macaca mulatta. American Journal of Orthodontics, ISSN 0002–9416, 64(6), 555–577 (1973).

[34] J. M. Battagel and H. S. Orton. A comparative study of the effects of customized facemask therapy or headgear to the lower arch on the developing class III face. European journal of orthodontics, ISSN 0141–5387, 17(6), 467–482 (1995).

[35] D. Rey, J. F. Aristizabal, G. Oberti and D. Angel. Mandibular cervical headgear in orthopedic and orthodontic treatment of class III cases. World journal of orthodontics, ISSN 1530–5678, 7(2), 165–176 (2006).

[36] T. W. P. Korioth, D. P. Romilly and A. G. Hannam. Three–dimensional finite element stress analysis of the dentate human mandible. American Journal of Physical Anthropology, ISSN 0002–9483, 88(1), 69–96 (1992).

[37] E. B. W. Giesen, M. Ding, M. Dalstra and T. M. G. J. Van Eijden. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. Journal of Biomechanics, ISSN 0021–9290, 34(6), 799–803 (2001).

[38] A. M. O’Mahony, J. L. Williams, J. O. Katz and P. Spencer. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clinical Oral Implants Research, ISSN 0905–7161, 11(5), 415–421 (2000).

[39] C. G. Provatidis. A comparative FEM–study of tooth mobility using isotropic and anisotropic models of the periodontal ligament . Medical Engineering & Physics, ISSN 1350–4533, 22(5), 359–370 (2000).

[40] F.A. Peyton, D. B. Mahler and B. Hershenoy. Physical properties of dentin. Journal of Dental Research, ISSN 0022–0345, 31, 366–370 (1952).

[41] V. Adams and A. Askenazi. Building better products with finite element analysis, ISBN 1–56690–160X. OnWord Press, 1998.

[42] T. Heinonen, K. Visala, M. Blomqvist, H. Eskola and H. Frey. 3D visualization library for multimodal medical images. Computerized Medical Imaging and Graphics, ISSN 0895–6111, 22(4), 267–273 (1998).

[43] R. A. Chirani, J. Jacq, P. Meriot and C. Roux. Temporomandibular joint: a methodology of magnetic resonance imaging 3–D reconstruction. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, ISSN 1079– 2104, 97(6), 756–761 (2004).

[44] J. Gao, W. Xu and J. Geng. 3D shape reconstruction of teeth by shadow speckle correlation method. Optics and Lasers in Engineering, ISSN 0143–8166, 44(5), 455–465 (2006).

[45] Y. Chen, P. Duan, Y. Meng and Y. Chen. Three–dimensional spiral computed tomographic imaging: a new approach to the diagnosis and treatment planning of impacted teeth. American Journal of Orthodontics & Dentofacial Orthopedics, ISSN 0889–5406, 130(1), 112–116 (2006).

[46] D. Vandermeulen, P. Claes, D. Loeckx, S. de Greef, G. Willems and P. Suetens. Computerized craniofacial reconstruction using CT–derived implicit surface representations. Forensic Science International, ISSN 0379–0738, 159(1), S164– S174 (2006).
[47] T. Nagasao, M. Kobayashi, Y. Tsuchiya, T. Kaneko and T. Nakajima. Finite element analysis of the stresses around fixtures in various reconstructed mandibular models – part II (effect of horizontal load). Journal of Cranio–Maxillofacial Surgery, ISSN 1010–5182, 31(3), 168–175 (2003).

[48] P. Maurer, W. Knoll and J. Schubert. Comparative evaluation of two osteosynthesis methods on stability following sagittal split ramus osteotomy. Journal of Cranio–Maxillofacial Surgery, ISSN 1010–5182, 31(5), 284–289 (2003).

[49] P. Maurer, S. Holweg and J. Schubert. Finite–element–analysis of different screw–diameters in the sagittal split osteotomy of the mandible. Journal of Cranio–Maxillofacial Surgery, ISSN 1010–5182, 27(6), 365–372 (1999).

[50] K. Hu, R. Qiguo, J. Fang and Mao Jeremy. Effects of condylar fibrocartilage on the biomechanical loading of the human temporomandibular joint in a three– dimensional, nonlinear finite element model . Medical Engineering and Physics, ISSN 1350–4533, 25(2), 107–113 (2003).

[51] R. Clement, J. Schneider, H. Brambs, A. Wunderlich, M. Geiger and F. G. Sander. Quasi–automatic 3D finite element model generation for individual single– rooted teeth and periodontal ligament . Computer Methods and Programs in Biomedicine, ISSN 0169–2607, 73(2), 135–144 (2004).

[52] E. Peña, B. Calvo, M. A. Martínez and M. Doblaré. A three–dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint . Journal of Biomechanics, ISSN 0021–9290, 39(9), 1686–1701 (2006).

[53] P. Ausiello, S. Rengo, C. L. Davidson and D. C. Watts. Stress distributions in adhesively cemented ceramic and resin–composite class II inlay restorations: A 3D–FEA study. Dental Materials Journal, ISSN 0287–4547, 20(9), 862–872 (2004).

[54] I. Ichim, J. A. Kieser and M. V. Swain. Functional significance of strain dis- tribution in the human mandible under masticatory load: numerical predictions. Archives of Oral Biology, ISSN 0003–9969, 52(5), 465–473 (2007).

[55] P. Magne, A. Versluis and W. H Douglas. Rationalization of incisor shape: experimental–numerical analysis. The Journal of prosthetic dentistry, ISSN 0022– 3913, 81(3), 345–355 (1999).

[56] P. M. Cattaneo, M. Dalstra and B. Melsen. The finite element method: a tool to study orthodontic tooth movement . Journal of Dental Research, ISSN 0022–0345, 84(5), 428–433 (2005).

[57] A. Nakasima, M. Terajima, N. Mori, Y. Hoshino, K. Tokumori and Y. Aoki. Three–dimensional computer–generated head model reconstructed from cephalograms, facial photographs, and dental cast models. American Journal of Orthodontics and Dentofacial Orthopedics, ISSN 0889–5406, 127(3), 282–292 (2005).

Most read articles by the same author(s)