Simulation of mechanical properties of Zr/ZrN and TiN/ZrN multilayers using the finite elements method

Main Article Content

H. D. Aristizábal–Soto
L. C. Agudelo
C. M. Bedoya Hincapié
E. Restrepo Parra

Keywords

Zr/ZrN, TiN/ZrN, ANSYS, mechanical properties, finite elements.

Abstract

In this work mechanical properties of Zr/ZrN and TiN/ZrN multilayers varying the bilayerd number in 1, 2, 5 and 10, that is, multilayer periods of 2, 1, 0.4 y 0.2 μm, with thickness constant of 2 μm in a ratio 1:1 y 1:3 were studied. For the simulation the ANSYS software was employed, based on the finite elements method. Strain–stress curves, the hardness and Young’s Modulus were obtained as function of the bilayer numbers. According, the analysis carried out, the TiN/ZrN bilayers with 1:3 ratio presented the highest hardness (31±1 GPa) regarding the others and a Young’s modulus approximately of 460 GPa. Results obtained from the mechanical properties simulations of materials |based on Ti and Zr, by using methods like finite elements are promising in the new materials field, in order to predict their performance in industrial and technological applications as hard coatings grown on several tools and machine pieces and from this way reducing the production costs. Moreover, simulations presented in this work can be extended to systems composed by other materials with great utilization.

PACS: 47.11.Fg, 73.21.Ac, 87.15.La, 81.40.Lm, 81.70.Bt, 81.70.Pg

MSC: 76M10

Downloads

Download data is not yet available.
Abstract 1142 | PDF (Español) Downloads 274

References

[1] M. A. Meyers, A. Mishra and D. J. Benson. Mechanical properties of nanocrys- talline materials. Progress in Materials Science, ISSN 0079–6425, 51(4), 427–556 (2006).

[2] Mohamed Gad-el-Hak. The MEMS Handbook, ISBN 978–0849300776.CRC Press, New York, 2002.

[3] W. D. Nix and H. J. Gao. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, ISSN 0022–5096, 46(3), 411–425 (1998).

[4] J. Lou, P. Shrotriya, T. Buchheit, D. Yang and W. O. Soboyejo. Nanoindentation study of plasticity length scale effects in LIGA Ni microelectromechanical systems structures. Journal of Materials Research, ISSN 0884–2914, 18(3), 719– 728 (2003).

[5] Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo. Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness. Materials Science and Engineering A, ISSN 0921–5093, 427(1–2), 232–240 (2006).

[6] X. Chu, M. S. Wong, W. D. Sproul, S. L. Rohde and S. A. Barnett. Deposi- tion and properties of polycrystalline TiN/NbN superlattice coatings. Journal of Vacuum Science and Technology A, ISSN 0734–2101, 10(4), 1604–1609 (1992).

[7] M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa and T. Nomura. Formation of cubic-A1N in TiN/A1N superlattice. Surface and Coatings Technology, ISSN 0257–8972, 86, 225–230 (1996).

[8] M. M. Lacerda, Y. H. Chen, B. Zhou, M. U. Guruz and Y. W. Chung. Synthesis of hard TiN coatings with suppressed columnar growth and reducedstress. Journal of Vacuum Science and Technology A, ISSN 0734–2101, 17(5), 2915–2919 (1999).

[9] Y. H. Chen, K.W. Lee,W. A. Chiou, Y.W. Chung and L. M. Keer. Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure. Surface and Coatings Technology, ISSN 0257–8972, 146–147, 209–214 (2001).

[10] M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi and Ph. Houdy. Nanoin- dentation investigation of Ti/TiN multilayers films. Journal of Applied Physics, ISSN 0021–8979, 87, 7753–7757 (2000).

[11] S. J. Bull and A. M. Jones. Multilayer coatings for improved performance. Surface and Coatings Technology, ISSN 0257–8972, 78(1–3), 173–184 (1996).

[12] N. J. M. Carvalho, E. Zoestbergen, B. J. Kooi and J. Th. M. De Hosson. Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings. Thin Solid Films, ISSN 0040–6090, 429(1–2), 179-–189 (2003).

[13] A. Lousa, J. Romero, E. Martínez, J. Esteve, F. Montalà and L. Carreras Mul- tilayered chromium/chromium nitride coatings for use in pressure die-casting. Surface and Coatings Technology, ISSN 0257–8972, 146–147, 268–273 (2001).

[14] J. Romero, J. Esteve and A. Lousa. Period dependence of hardness and micros- tructure on nanometric Cr/CrN multilayers. Surface and Coatings Technology, ISSN 0257–8972, 188–189, 338–343 (2004).

[15] J. M. Lackner, W. Waldhauser, B. Berghauser, R. Ebner and G. Kothleitner. Growth phenomena in room temperature pulsed laser deposited chromium and chromium nitride coatings. Surface and Coatings Technology, ISSN 0257–8972, 200(1–4), 387–390 (2005).

[16] L. Maillé, P. Aubert, C. Sant and P. Garnier. A mechanical study of W-N/W multilayers, Surface and Coatings Technology, ISSN 0257–8972, 180–181, 483– 487 (2004).

[17] S. K. Kim, Y. J. Baik and D. Kwon. Analysis of interfacial strengthening from composite hardness of TiN/VN and TiN/NbN multilayer hard coatings. Surface and Coatings Technology, ISSN 0257–8972, 187(1), 47–53 (2004).

[18] J. Romero, A. Lousa, E. Martinez and J. Esteve. Nanometric chro- mium/chromium carbide multilayers for tribological applications. Surface and Coatings Technology, ISSN 0257–8972, 163–164, 392–397 (2003).

[19] J. M. Lackner, W. Waldhauser, R. Major, L. Major and B. Major. Interface growth morphologies in pulsed laser deposited, room temperature grown multilayer hard coatings. Surface and Coatings Technology, ISSN 0257–8972, 201(7), 4090– 4093 (2006).

[20] X. Huang and A. A. Pelegri. Mechanical Characterization of Thin Film Materials with Nanoindentation Measurements and FE Analysis. Journal of Composite Materials, ISSN 0021–9983, 40(15), 1393–1407 (2006).

[21] X. Huang and A. A. Pelegri. Finite element analysis on nanoindentation with friction contact at the film/substrate interface. Composites science and technology, ISSN 0266–3538, 67(7–8), 1311–1319 (2007).

[22] A. Yonezu, B. Xu and X. Chen. Indentation induced lateral crack in ceramics with surface hardening. Materials Science and Engineering: A, ISSN 0921–5093, 507(1-2), 226–235 (2009). Referenciado en 93

[23] Y. C. Lin, Y. J. Weng, D. J. Pen and H. C. Li. Deformation model of brittle and ductile materials under nano-indentation. Materials and Design, ISSN 0261–3069, 30(5), 1643–1649 (2009).

[24] Z. G. Zhang, O. Rapaud, N. Allain, D. Mercs, M. Baraket, C. Dong and C. Coddet. Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings . Applied Surface Science, ISSN 0169–4332, 255(7), 4020–4026 (2009).

[25] Saulo P. Oliveira, Alexandre L. Madureira and Frederic Valentin. Weighted qua- drature rules for finite element methods. Journal of Computational and Applied Mathematics, ISSN 0377–0427, 227(1), 93–101 (2009).

[26] S. Amaya–Roncancio and E. Restrepo–Parra. Finite elements modeling of multi- layers of Cr/CrN . Microelectronics Journal, ISSN 0026–2692, 39(11), 1336–1338 (2008).

[27] M. T. Tilbrook, D. J. Paton, Z. Xie and M. Hoffman. Microstructural Effects on Indentation Failure Mechanisms in TiN Coatings: Finite Element Simulations. Acta Materialia, ISSN 1359–6454, 55(7), 2489–2501 (2007).

[28] P. Beer, J. Rudnicki, L. Ciupinsky, M. A. Djouadi and C. Nouveau. Modifica- tion by composite coatings of knives made of low alloy steel for wood machining purposes. Surface and Coatings Technology, ISSN 0257–8972, 174–175, 434–439 (2003).

[29] Christopher H. M. Jenkins and Sanjeev K. Khanna. Mechanics of Materials: A Modern Integration of Mechanics and Materials in Structural Design, 1a edition, ISBN 0123838525. Academic Press, 2005.

[30] W. Zhang, Ch. Wang and G. S. Kassab. The mathematical formulation of a generalized Hooke’s law for blood vessels. Biomaterials, ISSN 0142–9612, 28(24), 3569–3578 (2007).

[31] G. Portnov and C. E. Bakis. Analysis of stress concentration during tension of round pultruded composite rods. Composite Structures, ISSN 0263–8223, 83(1), 100–109 (2008).

[32] ANSYS HPC, http://www.ansys.com/, mayo de 2009.

[33] M. Stubicar, A. Tonejc and N. Radic. Microhardness characterization of Al-W thin films. Vacuum, ISSN 0042–207X, 61(2), 309–316 (2001).

[34] M. Kot, W. A. Rakowski, L. Major, R. Major and J. Morgiel. Effect of bilayer period on properties of Cr/CrN multilayer coatings produced by laser ablation. Surface and Coatings Technology, ISSN 0257–8972, 202(15), 3501–3506 (2008).

[35] Tabla Módulo de Young, http://www.unalmed.edu.co/fisica/paginas/cursos/ paginas_cursos/recursos_web/tabla_periodica/programas/tabla_propiedades_ mecanicas/modulo_young/tabla_modulo_young.html, junio de 2009.

[36] E. Török, A. J. Perry, L. Chollet and W. D. Sproul. Young’s modulus of TiN, TiC, ZrN and HfN. Thin Solid Films, ISSN 0040–6090, 153(1–3), 37–43 (1987).

[37] K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus and J. Koskinen. Tribological contact analysis of a rigid ball sliding on a hard coated surface: Part II: Material deformations, influence of coating thickness and Young’s modulus. Surface and Coatings Technology, ISSN 0257–8972, 200(12–13), 3810–3823 (2006).

[38] P. C. Yashar and W. D. Sproul. Nanometer scale multilayered hard coatings. Vacuum, ISSN 0042–207X, 55(3–4), 179–190 (1999).

Most read articles by the same author(s)