Mechanical and thermal properties optimization of a synthetic agglomerate by using the Taguchi Method

Main Article Content

C. M. Bedoya Hincapié
P. Pineda–Gómez
A. Rosales Rivera

Keywords

agglomerate, rice husk, vegetable fibers, thermal stability, mechanical properties

Abstract

In this work, the experimental design of Taguchi model was applied in order to obtain the most appropriate parameters to elaborate an agglomerate material which presents a good mechanical and thermal behavior. The raw materials used were rice husk, common clay, sand and aloe gel. The importance of the development of the synthetic agglomerates is in the use of agricultural wastes to give them an useful employment when replacing materials of great demand. The experimental combinations were done varying the control factors values: rice husk percentage (R), temperature (T) and thermal treatment time(t). Via to the optimization properties according Taguchi’s Methodology, the elasticity modulus, the absorbed energy in the impact, break maximum module and initial decomposition temperature to each experimental combination were selected. The Qualitek-4 software was used below the biggest the better quality characteristic. The optimum parameters obtained to each control level were: R = 15%, T = 120oC and t = 3 h. These results were confirmed with a new experiment, where similar properties to the wood species were obtained. The developing of this will be useful as substitute of the wood and could improve the environment impact due residual materials.

PACS: 88.30.mj, 81.70.Bt, 82.35.Pq

MSC: 91B82

Downloads

Download data is not yet available.
Abstract 1008 | PDF (Español) Downloads 1189

References

[1] A. P. Kumar and R. P. Singh. Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking. Bioresource Technology, ISSN 0960–8524, 99(18), 8803–8809 (2008).

[2] Y. Lei, Q. Wu, F. Yao and Y. Xu. Preparation and properties of recycled HDPE/ natural fiber composites. Composites. Part A, Applied science and manufacturing, ISSN 1359–835X, 38(7), 1664–1674 (2007).

[3] D. García, J. López, R. Balart, R. A. Ruseckaite and P. M. Stefani. Composites based on sintering rice husk-waste tire rubber mixtures. Materials and Design, ISSN 0261–3069, 28(7), 2234–2238 (2007).

[4] L. T. Vlaev, I. G. Markovska and L. A. Lyubchev. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, ISSN 0040–6031, 406(1-2), 1–7 (2003).

[5] K. G. Satyanarayana, G. G. C.Arizaga and F. Wypych. Biodegradable composites based on lignocellulosic fibers: An overview, Progress in Polymer Science, ISSN 0079–6700, 34(9), 982–1021 (2009).

[6] J. Werther, M. Saenger, E-U. Hartge, T. Ogada and Z. Siagi. Combustion of agricultural residues. Progress in Energy and Combustion Science, ISSN 0360– 1285, 26(1), 1–27 (2000).

[7] A. K. Bledzki and J. Gassan. Composites reinforced with cellulose based fibres. Progress in Polymer Science, ISSN 0079–6700, 24(2), 221–274 (1999).

[8] S. Kim. Incombustibility, physico-mechanical properties and TVOC emission behavior of the gypsum-rice husk boards for wall and ceiling materials for construction. Industrial crops and products, ISSN 0926–6690, 29(2-3), 381–387 (2009).

[9] Victor Castaño. Sugestec: Sistema Universitario de Gestión Tecnológica, http://www.sugestec.unam.mx/sugestec/galeria_1.jsp?clave=39, abril de 2009.

[10] El nuevo empresario, http://www.elnuevoempresario.com/noticia_827_manabitacreo- el-acero-vegetal.php, febrero de 2009.

[11] René Salgado Delgado. La cascarilla de arroz: Un excelente sustituto de la madera. Hypatia: Revista de Divulgacion Científico–Tecnológica del Gobierno del Estado de Morelos, 11, 2004.

[12] F. Le Digabel and L. Avérous. Effects of lignin content on the properties of lignocellulose-based Biocomposites. Carbohydrate Polymers, ISSN 0144–8617, 66(4), 537–545 (2006).

[13] L. Dányádi, T. Janecska, Z. Szabó, G. Nagy, J. Móczó and B. Pukánszky. Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, ISSN 0266–3538, 67(13), 2838–2846 (2007).

[14] B. S. Ndazi, S. Karlsson, J. V. Tesha and C.W. Nyahumwa Chemical and physical modifications of rice husks for use as composite panels. Composites. Part A, Applied science and manufacturing , ISSN 1359-835X, 38(3), 925–935 (2007).

[15] M. Joseph Davidson, K. Balasubramanian and G. R. N. Tagore. Experimental investigation on flow-forming of AA6061 alloy-A Taguchi approach. Journal of materials processing technology, ISSN 0924–0136, 200(1–3), 283–287 (2008).

[16] C. Hu, Y. Chang, L. Yin, C.Tsao and C.Chang. Optimal design of nickel-coated protein chips using Taguchi approach. Sensors and actuators B Chemical, ISSN 0925–4005, 108(1–2), 665–670 (2005).

[17] L. S. I Jorba. El secreto de la calidad japonesa: El diseño de experimentos clásicos, Taguchi y Shainin, ISBN 84–267–0913–3, Barcelona, Marcombo, 1993.

[18] ASTM International. Standard Test Methods for Evaluating Properties of Wood- Base Fiber and Particle Panel Material . D 1037–99, 141–171 (2006).

[19] F. Mejía Fernández. Propiedades físicas y mecánicas de especies maderables en Caldas para su uso en la construcción, incluyendo la guadua. Universidad Nacional de Colombia, Manizales (1985).

[20] B. Madsen, A. Thygesen and H. Lilholt. Plant fibre composites - porosity and stiffness. Composites Science and Technology, ISSN 0266–3538, 69(7–8), 1057– 1069 (2009).

[21] K. G. Mansaray and A. E. Ghaly. Thermal degradation of rice husks in nitrogen atmosphere. Bioresource Technology, ISSN 0960–8524, 65(1-2), 13–20 (1998).

[22] P. J. Ross. Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, ISBN 0 07–053866–2. McGraw–Hill, United States (1988).

Most read articles by the same author(s)