Product of independent random variables involving inverted hypergeometric function type I variables

Main Article Content

Edwin Zarrazola
Daya Krishna Nagar

Keywords

appell's first hypergeometric function, beta distribution, Gauss hypergeometric function, Humbert’s confluent hypergeometric function, product, transformation

Abstract

The inverted hypergeometric function type I distribution has the probability density function proportional to [formula] where 2F1 is the Gauss hypergeometric function. In this article, we derive the probability density function of the product of two independent random variables having inverted hypergeometric function type I distribution. We also consider several other products involving inverted hypergeometric function type I, beta type I, beta type II, beta type III, Kummer-beta and hypergeometric function type I variables.

MSC: 33Cxx

Downloads

Download data is not yet available.
Abstract 1141 | PDF Downloads 854

References

[1] A. K. Gupta and D. K. Nagar.Matrix variate distributions, ISBN 1–58488–046–5. Chapman & Hall/CRC. Boca Raton, 2000.

[2] Daya K. Nagar and José A. Álvarez. Properties of the hypergeometric function type I distribution. Advances and Applications in Statistics, ISSN 0972–3617, 5(3), 341–351 (2005).

[3] A. M. Mathai and R. K. Saxena. Distribution of product and the structural set up of densities. Annals of Mathematical Statistics, ISSN 0003–4851, 40(4), 1439— 1448 (1969).

[4] D. K. Nagar and E. Zarrazola. Distributions of the product and the quotient of independent Kummer–beta variables. Scientiae Mathematicae Japonicae, ISSN 1346–0862, eISSN 1346–0447, 61(1), 109–117 (2005).

[5] Luz E. S´anchez and Daya K. Nagar. Distributions of the product and quotient of independent beta type 3 variables. Far East Journal of Theoretical Statistics, ISSN 0972–0863, 17(2), 239–251 (2005).

[6] Michael B. Gordy. Computationally convenient distributional assumptions for common-value auctions. Computational Economics, ISSN 0927–7099, eISSN 1572–9974, 12(1), 61–78 (1998).

[7] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions-2, second edition, ISBN 978-0-471-58494-0. John Wiley & Sons, New York, 1994.

[8] A. K. Gupta and D. K. Nagar. Matrix variate beta distribution. International Journal of Mathematics and Mathematical Sciences, ISSN 0161–1712, eISSN 1687–0425, 24(7), 449–459 (2000).

[9] D. K. Nagar and A. K. Gupta. Matrix variate Kummer–beta distribution. Jour- nal of the Australian Mathematical Society, ISSN 1446–7887, eISSN 1446–8107, 73(1), 11–25 (2002).

[10] Y. L. Luke. The special functions and their approximations, vol. 1, ISBN 0– 124–59901–X. Academic Press, New York, 1969. Referenced in 104, 105

[11] H. M. Srivastava and P. W. Karlsson. Multiple Gaussian hypergeometric series, ISBN 0–470–20100–2. Halsted Press [John Wiley & Sons], New York, 1985.

[12] A. M. Mathai and R. K. Saxena. The H-function with applications in statistics and other disciplines, ISBN 0–852–26559–X. Halsted Press [John Wiley & Sons], New York, 1978.

[13] A. M. Mathai. A handbook of generalized special functions for statistical and physical sciences, ISBN 0–198–53595–3.Oxford University Press, New York, 1993.