Properties and Applications of Extended Hypergeometric Functions
Main Article Content
Keywords
beta distribution, extended beta function, extended confluent hyper- geometric function, extended gamma function, extended Gauss hypergeometric function, gamma distribution, quotient, Gauss hypergeometric function
Abstract
In this article, we study several properties of extended Gauss hypergeometric and extended confluent hypergeometric functions. We derive several integrals, inequalities and establish relationship between these and other special functions. We also show that these functions occur naturally in statistical distribution theory.
MSC: 33C90
Downloads
References
[2] M. A. Chaudhry, A. Qadir, M. Rafique, and S. M. Zubair, “Extension of Euler’s beta function,” J. Comput. Appl. Math., vol. 78, no. 1, pp. 19–32, 1997. [Online]. Available: http://dx.doi.org/10.1016/S0377-0427(96)00102-1 13, 15, 25
[3] A. R. Miller, “Remarks on a generalized beta function,” J. Comput. Appl. Math., vol. 100, no. 1, pp. 23–32, 1998. [Online]. Available: http://dx.doi.org/10.1016/S0377-0427(98)00121-6 13, 14, 18
[4] M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, “Extended hypergeometric and confluent hypergeometric functions,” Appl. Math. Comput., vol. 159, no. 2, pp. 589–602, 2004. [Online]. Available: http://dx.doi.org/10.1016/j.amc.2003.09.017 13, 14, 15
[5] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed. Elsevier/Academic Press, Amsterdam, 2007, translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX). 15
[6] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions. Vol. 2, 2nd ed., ser. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc., 1995, a Wiley-Interscience Publication. 24
[7] A. K. Gupta and D. K. Nagar, Matrix variate distributions, ser. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2000, vol. 104. 24
[8] D. K. Nagar and E. Zarrazola, “Distributions of the product and the quotient of independent Kummer-beta variables,” Sci. Math. Jpn., vol. 61, no. 1, pp. 109–117, 2005. [Online]. Available: http://www.jams.or.jp/scm/contents/e-2004-1/2004-4.pdf 29
[9] R. A. Morán-Vásquez and D. K. Nagar, “Product and quotients of independent Kummer-gamma variables,” Far East J. Theor. Stat., vol. 27, no. 1, pp.41–55, 2009. 29
[10] J. A. Castillo Pérez and C. Jiménez Ruiz, “Algunas representaciones simples de la función hipergeométrica generalizada 2r1(a; b; c; _ ; x),” Ingeniería y Ciencia, vol. 2, no. 4, pp. 75–94, 2006. [Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/464 30
[11] J. A. Castillo Pérez, “Algunas integrales impropias con límites de integración infinitos que involucran a la generalización _ de la función hipergeométrica de gauss,” Ingeniería y Ciencia, vol. 3, no. 5, pp. 67–85, 2007. [Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/456 30
[12] ——, “Algunas integrales que involucran a la función hipergeométrica generalizada,” Ingeniería y Ciencia, vol. 4, no. 7, pp. 7–22, 2008. [Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/ article/view/224 30
[13] J. A. Castillo Pérez and L. Galué, “Algunas integrales indefinidas que contienen a la función hipergeométrica generalizada,” Ingeniería y Ciencia, vol. 5, no. 9, pp. 45–54, 2009. [Online]. Available: http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/467 30