Optimización de la resistencia mecánica de cementos binarios MK/GBFS activados alcalinamente por Metodología de Superficie de Respuesta

Main Article Content

Marisol Gordillo https://orcid.org/0000-0003-1602-5547
Erich D. Rodríguez
Ruby Mejía de Gutierrez https://orcid.org/0000-0002-5404-2738

Keywords

Escoria siderúrgica de alto horno, metacaolín, cementos de activación alcalina, resistencia a la compresión, metodología de superficie de respuesta.

Resumen

El presente artículo muestra la modelación y optimización de la resistencia a la compresión de un conglomerante no convencional libre de cemento Portland, el cual fue producido a partir de la activación alcalina de una mezcla binaria de un metacaolín (MK) y una escoria siderúrgica de alto horno (GBFS). Como factores de estudio se consideró una relación GBFS/(GBFS/MK) entre 0,0-0,8 y una relación molar total SiO2=Al2O3 entre 2,8-4,2. La relación SiO2=Al2O3 fue ajustada a través de la contribución del precursor (MK+GBFS) y el activador alcalino. La evaluación estadística mediante la metodología de superficie de respuesta (MSR) mostró un efecto significativo entre la relación molar SiO2=Al2O3 y el contenido de GBFS sobre la resistencia a compresión. Complementariamente se desarrolló una caracterización microestructural a través de difracción de rayos X y microscopía electrónica de barrido. La incorporación de GBFS incrementó la cinética de reacción y la formación de una estructura más densa y compacta. Estos nuevos productos de reacción le otorgaron al material un mayor desempeño mecánico comparado con los constituidos con un 100% de MK.

PACS: 81.05.Je; 81.05.Zx;02.70.Rr

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1215 | PDF Downloads 590 HTML Downloads 1035

Referencias

[1] A. Purdon, “The action of alkalis on blast-furnace slag”, Journal of the Societyof Chemical Industry, vol. 59, pp. 191-202, 1940.

[2] V. Glukhovsky, “Soil silicates. Kiev”, USSR: Gostroiizdat Publish, 1959.

[3] J. Davidovits, “Synthesis of new high temperature geo-polymers for reinforcedplastics/composites”, 1979.

[4] C. Shi, D. M. Roy, and P. Krivenko, Alkali-activated Cements and Concretes.London. U.K.: Taylor & Francis, 2006.

[5] F. Puertas, “Cementos de escoria activados alcalinamente: situación actualy perspectivas de futuro”, Materiales de Construcción, vol. 45, no. 239, pp.53-64, 1995.

[6] J. L. Provis and J. S. J. van Deventer, Geopolymers. Structure, processing,properties and industrial applications. Oxford - Cambridge - New Delhi:Woodhead Publishing Limited, 2009.

[7] F. Pachecotorgal, J. Castrogomes, and S. Jalali, “Alkali-activated binders: AreviewPart 1. Historical background, terminology, reaction mechanisms andhydration products”, Construction and Building Materials, vol. 22, no. 7, pp.1305-1314, Jul. 2008.

[8] F. Pachecotorgal, J. Castrogomes, and S. Jalali, “Alkali-activated binders: Areview. Part 2. About materials and binders manufacture”, Construction andBuilding Materials, vol. 22, no. 7, pp. 1315-1322, Jul. 2008.

[9] American Society for Testing & Materials, “ASTM C618 - 12a. StandardSpecification for Coal Fly Ash and Raw or Calcined Natural Pozzolan forUse in Concrete”, 2012.

[10] A. Palomo, “Alkali-activated fly ashes A cement for the future”, Cement andConcrete Research, vol. 29, no. 8, pp. 1323-1329, Aug. 1999.

[11] A. Fernandezjimenez and A. Palomo, “Composition and microstructure ofalkali activated fly ash binder: Effect of the activator”, Cement and ConcreteResearch, vol. 35, no. 10, pp. 1984-1992, Oct. 2005.

[12] J. S. J. van Deventer, J. L. Provis, P. Duxson, and G. C. Lukey, “Reactionmechanisms in the geopolymeric conversion of inorganic waste to useful products”,Journal of Hazardous Materials, vol. 139, no. 3, pp. 506-513, Jan.2007.

[13] J. Davidovits, “Geopolymers: Inorganic polymeric new materials”, Journal OfThermal Analysis, vol. 37, no. 8, pp. 1633-1656, 1991.

[14] C. K. Yip, G. C. Lukey, and J. S. J. van Deventer, “The coexistence ofgeopolymeric gel and calcium silicate hydrate at the early stage of alkalineactivation”, Cement and Concrete Research, vol. 35, no. 9, pp. 1688-1697,Sep. 2005.

[15] Z. Yunsheng, S. Wei, C. Qianli, and C. Lin, “Synthesis and heavy metalimmobilization behaviors of slag based geopolymer”, Journal of hazardousmaterials, vol. 143, no. 1-2, pp. 206-13, May 2007.

[16] F.-Q. Zhao, W. Ni, H.-J.Wang, and H.-J. Liu, “Activated fly ash/slag blendedcement”, Resources, Conservation and Recycling, vol. 52, no. 2, pp. 303-313,Dec. 2007.

[17] F. Puertas, S. Martínez-Ramírez, S. Alonso, and T. Vázquez, “Alkaliactivatedfly ash/slag cements”, Cement and Concrete Research, vol. 30, no.10, pp. 1625-1632, Oct. 2000.

[18] F. Puertas and A. Fernández-Jiménez, “Mineralogical and microstructuralcharacterisation of alkali-activated fly ash/slag pastes,” Cement and ConcreteComposites, vol. 25, no. 3, pp. 287-292, Apr. 2003.

[19] S. Bernal, E. Rodríguez, R. Mejía de Gutierrez, J. Provis, and S. Delvasto,“Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based onChemically Modified Silica Fume and Rice Husk Ash,” Waste and BiomassValorization, vol. 3, no. 1, pp. 99-108, 2012.

[20] S. A. Bernal, R. Mejía De Gutiérrez, and J. L. Provis, “Engineering anddurability properties of concretes based on alkali-activated granulated blastfurnace slag/metakaolin blends,” Construction and Building Materials, vol.33, pp. 99-108, 2012.

[21] S. Bernal, M. Gordillo, R. Mejía de Gutiérrez, E. Rodríguez, S. Delvasto,and R. Cuero, “Modelamiento de la resistencia a la compresión de concretosalternativos, usando la metodología de superficie de respuesta (Modeling ofthe compressive strength of alternative concretes using the response surfacemethodology),” Revista Facultad de Ingenieria. Universidad de Antioquia,vol. 49, no. 11, pp. 112-123, 2009.

[22] S. Kumar, R. Kumar, and S. P. Mehrotra, “Influence of granulated blastfurnace slag on the reaction, structure and properties of fly ash based geopolymer,”Journal of Materials Science, vol. 45, no. 3, pp. 607-615, Oct. 2009.

[23] M. Izquierdo, X. Querol, J. Davidovits, D. Antenucci, H. Nugteren, and C.Fernández-Pereira, “Coal fly ash-slag-based geopolymers: microstructure andmetal leaching.,” Journal of hazardous materials, vol. 166, no. 1, pp. 561-6,Jul. 2009.

[24] M. Izquierdo, X. Querol, C. Phillipart, D. Antenucci, and M. Towler, “Therole of open and closed curing conditions on the leaching properties of flyash-slag-based geopolymers.,” Journal of hazardous materials, vol. 176, no.1-3, pp. 623-8, Apr. 2010.

[25] A. Fernández-Jiménez, M. Monzó, M. Vicent, A. Barba, and A. Palomo,“Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramicsand Zeocements,” Microporous and Mesoporous Materials, vol. 108, no. 1-3,pp. 41-49, Feb. 2008.

[26] L. A. Sarabia and M. C. Ortiz, Comprehensive Chemometrics, vol. null, no.null. Elsevier, 2009.

[27] D. C. Montgomery, Design and Analysis of Experiments, Second edi. NewYork. U.S., 2005.

[28] J.-T. Horng, N.-M. Liu, and K.-T. Chiang, “Investigating the machinabilityevaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramictool based on the response surface methodology,” Journal of MaterialsProcessing Technology, vol. 208, no. 1-3, pp. 532-541, Nov. 2008.

[29] D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, “Influencesof atmospheric plasma spraying parameters on the porosity level ofalumina coating on AZ31B magnesium alloy using response surface methodology,”Progress in Natural Science: Materials International, vol. 22, no. 5,pp. 468-479, Oct. 2012.

[30] A. Chakchouk, L. Trifi, B. Samet, and S. Bouaziz, “Formulation of blendedcement: Effect of process variables on clay pozzolanic activity,” Constructionand Building Materials, vol. 23, no. 3, pp. 1365-1373, Mar. 2009.

[31] E. K. K. Nambiar and K. Ramamurthy, “Models relating mixture compositionto the density and strength of foam concrete using response surfacemethodology,” Cement and Concrete Composites, vol. 28, no. 9, pp. 752-760,Oct. 2006.

[32] B. S. Mohammed, O. C. Fang, K. M. Anwar Hossain, and M. Lachemi,“Mix proportioning of concrete containing paper mill residuals using responsesurface methodology,” Construction and Building Materials, vol. 35, no. null,pp. 63-68, Oct. 2012.

[33] M. T. Cihan, A. Güner, and N. Yüzer, “Response surfaces for compressivestrength of concrete,” Construction and Building Materials, vol. 40, no. null,pp. 763-774, Mar. 2013.

[34] L. E. Chávez-Valencia, C. Hernández-Barriga, and A. Manzano-Ramírez,“Modelación del envejecimiento de los pavimentos asfálticos con la metodologíade la superficie de respuesta,” Ingeniería Investigación, vol. 12, no. 4,pp. 373-382, 2011.

[35] J. Fornosa, “Formulaciones de nuevos morteros y cementos especiales basadosen sub-productos de magnesio.,” Universitat de Barcelona, 2012.

[36] American Society for Testing & Materials, “Standard Practice for MechanicalMixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency,”2012.

[37] J. W. Phair and J. S. J. Van Deventer, “Effect of silicate activator pH onthe leaching and material characteristics of waste-based inorganic polymers,”Minerals Engineering, vol. 14, no. 3, pp. 289-304, Mar. 2001.

[38] C. K. Yip, G. C. Lukey, J. L. Provis, and J. S. J. van Deventer, “Effect of calciumsilicate sources on geopolymerisation,” Cement and Concrete Research,vol. 38, no. 4, pp. 554-564, Apr. 2008.

[39] M. L. Granizo and M. T. Blanco, “Alkaline Activation of Metakaolin AnIsothermal Conduction Calorimetry Study,” Journal of Thermal Analysis andCalorimetry, vol. 52, no. 3, pp. 957-965.

[40] S. A. Bernal, J. L. Provis, V. Rose, and R. Mejía de Gutierrez, “Evolution ofbinder structure in sodium silicate-activated slag-metakaolin blends,” Cementand Concrete Composites, vol. 33, no. 1, pp. 46-54, Jan. 2011.

[41] M. L. Granizo, M. T. Blanco-Varela, and A. Palomo, “Influence of the startingkaolin on alkali-activated materials based on metakaolin. Study of thereaction parameters by isothermal conduction calorimetry,” Journal of MaterialsScience, vol. 35, no. 24, pp. 6309-6315, 2000.

[42] L. Holzer, R. Figi, A. Gruskovnjak, B. Lothenbach, and F. Winnefeld, “Hydrationof alkali-activated slag: comparison with ordinary Portland cement,”Advances in Cement Research, vol. 18, no. 3, pp. 119-128, Jan. 2006.

[43] A. Fernández-Jiménez, F. Puertas, and Á. Arteaga Iriarte, “Determinationof kinetic equations of alkaline activation of blast furnace slag by means ofcalorimetric data,” Journal of Thermal Analysis and Calorimetry, vol. 52, no.3, pp. 945-955, 1998.

[44] M. L. Granizo, S. Alonso, M. T. Blanco-varela, and A. Palomo, “AlkalineActivation of Metakaolin: Effect of Calcium Hydroxide in the Products ofReaction,” Journal of the American Ceramic Society, vol. 85, no. 1, pp. 225-231, 2002.

[45] A. Fernandezjimenez, A. Palomo, and M. Criado, “Microstructure developmentof alkali-activated fly ash cement: a descriptive model,” Cement andConcrete Research, vol. 35, no. 6, pp. 1204-1209, Jun. 2005.

[46] C. K. Yip and J. S. J. van Deventer, “Microanalysis of calcium silicate hydrategel formed within a geopolymeric binder,” Journal of Materials Science, vol.38, no. 18, pp. 3851-3860.

Artículos más leídos del mismo autor/a