Análisis CFD de vientos convectivos naturales debidos a la temperatura de un terreno basado en un modelo DEM integrado con imágenes infrarrojas Landsat
Main Article Content
Keywords
convección natural, Landsat, digital elevation models, din´amica de fluidos computacional.
Resumen
El presente trabajo estudia la influencia de estructuras de concreto en la temperatura atmosférica y los vientos convectivos generados en el Valle de Aburrá en Medellín, Colombia. Esta zona se caracteriza por vientos de bajas velocidades con alta densidad industrial. Un modelo de elevación digital fue obtenido de la misión topográfica del radar Shuttle y post-procesado en aras de obtener un dominio volumétrico CFD válido. El proceso de construcción incluye el parchado de agujeros debidos a imperfectos en los datos originarios del radar, decimación de la nube de puntos original para reducir el exceso de detalle en regiones con baja curvatura y la generación de un volumen de aire sobre la superficie del terreno (Dominio CFD). Datos obtenidos de la misión satelital Landsat fueron utilizados para establecer temperaturas sobre el terreno para distintos materiales y fue mapeada sobre el terreno utilizando técnicas de interpolación. Las ecuaciones de Navier–Stokes fueron solucionadas para modelos de fenómenos de convección natural con efectos de flujo turbulento de fluidos compresibles, tomando en cuenta efectos convectivos y de transferencia de calor. La simulación incluye convección y condiciones de turbulencia bajo el modelo k–epsilon utilizando las instalaciones de computaci´on de alto desempeño de Westgrid (Western Canada Research Grid). Los resultados preliminares muestran distribuciones de viento comparables a las observadas en la región de baja altitud
PACS: 47, 95.55.Rg, 07.57.Kp
MSC: 76, 97M50
Descargas
Referencias
[2] Paolo Monti and Giovanni Leuzzi. A numerical study of mesoscale airflow and dispersion over coastal complex terrain. International Journal of Environment and Pollution, ISSN 0957–4352, 25(1-4), 239–250 (2005).
[3] Paul Dawson, David E. Stock and Brian Lamb. The numerical simulation of airflow and dispersion in three-dimensional atmospheric recirculation zones. Journal of applied meteorology, ISSN 0894–8763, 30(7), 1005–1024 (1991).
[4] Si–Wan Kim, Chin–HohMoeng, Jeffrey C.Weil, andMary C. Barth. Lagrangian particle dispersion modeling of the fumigation process using large–eddy simulation. Journal of athmosferic Sciences, ISSN 0022–4928, 62(6), 1932–1946 (2005).
[5] P. W. Cleary and M. Prakash. Discrete element modelling and smooth particle hydrodynamics: potential in the environmental sciences. Phil. Transaction of Royal Society, 362, 2003–2030 (2004).
[6] Xiuling Wang, Darrell Pepper, Yitung Chen and Sean Hsieh. A three dimensional finite element model for emergency response. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005.
[7] L. B. Hansen, N. Kamstrup and B. Ulf Hansen. Estimation of net short-wave radiation by the use of remote sensing and a digital elevation model: a case study of a high arctic mountainous area. International Journal of Remote Sensing, ISSN 0143–1161, 23(21), 4699–4718 (2002).
[8] NGA and NASA. Shuttle radar topography mission (srtm). http://www2.jpl. nasa.gov/srtm/, 2000.
[9] Pat L. Scaramuzza, Brian L. Markham, Julia A. Barsi, and Ed Kaita. Landsat–7 etm+ on–orbit reflective–band radiometric characterization. IEEE Transactions on geoscience and remote sensing, ISSN 0196–2892, 42(12), 2796–2809, (December 2004).
[10] Landsat Project Science Office. Landsat 7 Science Data Users Handbook. Goddard Space Flight Center, NASA, Washinghton, 2002.
[11] P. Dash, F. M. Gottsche, F. S. Olesen and H. Fischer. Land surface temperature and emissivity estimation from passive sensor data: theory and practice–current trends. International Journal of Remote Sensing, ISSN 0143–1161, 23(13), 2563–2594 (2002).
[12] A. J. Prata, V. C. Coll, J. A Sobrino, and C. Ottle. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sensing Reviews, ISSN 0275–7257, 12, 175–224 (1995).
[13] G. B. Franca and A. P. Cracknell. Retrieval of land and sea surface temperature using noaa-11 avhrr data in north-eastern brazil. International Journal of Remote Sensing, 15(8), 1695–1712 (1994).
[14] M. A. Friedl. Forward and inverse modeling of land surface energy balanceusing surface temperature measurements. Remote Sensing of Environment, ISSN 0034-4257, 79(2–3), 344–354 (2002).
[15] Manuel J. Garc´ıa. Fixed Grid Finite Element Analysis in Structural Design and Optimization. PhD Thesis, The University of Sydney, Sydney, 1999.
[16] Joachim Sch¨oberl. NETGEN, 4.3 edition, http://www.hpfem.jku.at/netgen. Johannes Kepler University Linz, Austria, 2005.
[17] T. Schmugge, S. J. Hook, and C. Coll. Recovering surface temperature and emissivity from thermal infrared multispectral data. Remote Sensing of Envi- ronment, ISSN 0034–4257, 65(2), 121–131 (1998).
[18] D.A. Artis and W. H. Carnahan. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, ISSN 0034–4257, 12, 313–329 (1982).
[19] A. Van de Griend and M. Owe. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. International Journal of Remote Sensing, ISSN 0143–1161, 14(6), 1119–1131 (1993).
[20] Jinqu Zhang, Yupeng Wang and Yan Li. A C++ program for retrieving land surface temperature from the data of landsat tm/etm+ band6. Computers & Geosciences, ISSN 0098–3004, 32(10), 1796–1805 (2006).
[21] Michael F. Jansinski. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale. Remote Sensing of Environment, ISSN 0034-4257, 32, 169–187 (1990).
[22] National Oceanic and Atmospheric administration and NASA and United States Airforce. U.S. Standard atmoshpere, 1976.
[23] H.G. Weller, G. Tabor, H. Jasak and C. Fureby. A tensorial approach to computational continuum mechanics using object orientated techniques. Computers in Physics, 12(6), 620–631 (1998).
[24] Hrvoje Jasak, Henry G. Weller and Niklas Nordin. In-cylinder CFD simulation using a C++ object-oriented toolkit. SAE technical papers, document number 2004-01-0110, 2004.
[25] Erik N. Rasmussen, Robert Davies-Jones and Ronald L. Holle. Terrestrial photogrammetry of weather images acquired in uncontrolled circumstances. Journal of atmospheric and oceanic technology, ISSN 0739–0572, 20(12), 1790–1803 (2003).
[26] Harold D. Orvill and A. Richard Kassander Jr. Terrestrial Photogrammetry of Clouds. Journal of the Atmospheric Sciences, ISSN 0022–4928, 18(5), 682–687 (1961).
[27] R. M. Hardesty, R. M. Banta, M. J. Post and W. L. Eberhard. A decade of atmospheric studies using a pulsed CO2 Doppler lidar. Geoscience and Remote Sensing Symposium, 1994. IGARSS ’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International, IEEE, ISBN 0–7803–1497–2, 2, 926–928 (1994).