Influencia de la inserción de átomos de Si en la formación del compuesto TiSiN por simulación DFT
Main Article Content
Keywords
Teoría de funcionales de densidad, estructura cristalina, silicio, películas delgadas, revestimientos
Resumen
Se simularon estructuras del SiN y TiN utilizando Teoría de Funcionales de Densidad (DFT), con el fin de estudiar la influencia de la inserción de átomos de Si en la estructura del TiN en posiciones intersticiales y sustitucionales de una red cristalina cúbica centrada en las caras (FCC). Los resultados mostraron que la estructura SiN-FCC es pseudo estable, mientras que la estructura tetragonal es estable, con comportamiento cerámico. La estructura del TiN-FCC es estable con un comportamiento cerámico similar al del SiN-tetragonal. La inserción de 21% de átomos de Si en posiciones intersticiales, el material mostró alta deformación inducida, alta polarización y formación de enlaces Si-N, indicadores de una transición amorfa que podría producir un compuesto formado por granos o nanogranos de TiN embebidos en una matriz amorfa de Si-N. Mientras que al incluir 21% de Si sustituyendo átomos de Titanio, se observó una distribución más estable, que puede producir diferentes fases del compuesto estequiométrico Ti1-xSixNy.
Descargas
Referencias
Métodos Computacionales,” Revista Colombiana de Física, vol. 39, no. 1, pp. 139–142, 2007. 12, 17
[2] J. M. González, A. Ruden, A. Neira, F. Sequeda, and P. Leroux, “Influence of Substrate Temperature on Structure and Tribological Properties of TiAlNV,”Society of Vacuum Coaters, vol. 51, pp. 666–672, 2008. 12, 15
[3] D. M. Devia, J. Restrepo, A. Ruden, J. M. González, F. Sequeda, and P. J.Arango, “The Tribological Characteristics of TiN, TiC, TiC/TiN Films Prepared by Reactive Pulsed Arc Evaporation Technique,” Society of Vacuum Coaters, vol. 505, pp. 32–36, 2009. 12
[4] A. Murcia, A. Ruden, A. Neira, J. M. Gonzalez, I. Castro, S. Brulh, and F. Sequeda, “Tribological Properties of Duplex Coating Applied in Chrome Based Steel,” Society Vacuum Coaters, vol. 505, pp. 37–43, 2009. 12
[5] M. F. Cano, J. S. Restrepo, A. Ruden, J. M. González, and F. Sequeda,“The Effect of Substrate Temperatures on Tribological Behavior of Ti-Al-N Coating Deposited by Magnetron Sputtering,” Rev. Society of Vacuum Coaters, vol. 52, pp. 37–43, 2009. 12
[6] C.-L. Chang, W.-C. Chen, P.-C. Tsai, W.-Y. Ho, and D.-Y. Wang, “Characteristics and performance of TiSiN/TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” Surface and Coatings Technology, vol.202, no. 4, pp. 987–992, 2007. 12
[7] D. Devia, R. Ospina, V. Benavides, E. Restrepo, and A. Devia, “Study of TiN/BN bilayers produced by pulsed arc plasma,” Vacuum, vol. 78, no. 1,pp. 67–71, 2005. 12
[8] S.-M. Yang, Y.-Y. Chang, D.-Y. Lin, D.-Y. Wang, and W. Wu, “Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process,” Surface and Coatings Technology, vol.202, no. 10, pp. 2176–2181, 2008. 12, 13
[9] L. Rebouta, C. J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T. C.Rojas, and J. A. Odriozola, “Hard nanocomposite Ti–Si–N coatings prepared by DC reactive magnetron sputtering,” Surface and Coatings Technology, vol.133, pp. 234–239, 2000. 13
[10] Y. H. Cheng, T. Browne, B. Heckerman, and E. I. Meletis, “Mechanicaland tribological properties of nanocomposite TiSiN coatings,” Surface and Coatings Technology, vol. 204, no. 14, pp. 2123–2129, 2010. 13
[11] R. F. Zhang and S. Veprek, “Metastable phases and spinodal decompositionin Ti 1- x Al x N system studied by ab initio and thermodynamic modeling,a comparison with the TiN–Si 3 N 4 System,” Materials Science and Engineering: A, vol. 448, no. 1, pp. 111–119, 2007. 13, 16, 17, 19
[12] M. Paulasto, F. J. J. Van Loo, and J. K. Kivilahti, “Stability and formation kinetics of TiN and silicides in the Ti/Si3N4 diffusion couple,” Le Journal de Physique IV, vol. 3, no. C7, pp. C7—-1069, 1993. 13
[13] E. V. Shalaeva, S. V. Borisov, O. F. Denisov, and M. V. Kuznetsov,“Metastable phase diagram of Ti–Si–N (O) films (C Si< 30 at.%),” Thin Solid Films, vol. 339, no. 1, pp. 129–136, 1999. 13, 15, 16, 17, 18, 19, 20
[14] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro,and E. Alves, “Characterisation of Ti 1- x Si x N y nanocomposite films,” Surface and Coatings Technology, vol. 133, pp. 307–313, 2000. 13
[15] J. Houska, J. E. Klemberg-Sapieha, and L. Martinu, “Atomistic simulations of the characteristics of TiSiN nanocomposites of various compositions,” Surface and Coatings Technology, vol. 203, no. 22, pp. 3348–3355, 2009. 13, 19
[16] F. Kauffmann, G. Dehm, V. Schier, A. Schattke, T. Beck, S. Lang, and E. Arzt, “Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiN x coatings prepared by magnetron sputtering,” Thin Solid Films, vol. 473, no. 1, pp. 114–122, 2005. 13, 14, 18, 19
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,G.Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,O.Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B.Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,S.Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,M. W. Wong, C. Gonzalez, and J. A. Pople, “Gaussian. inc., wallingford, ct,2005 - gaussian 03, revicion d. i,” Gaussian, Inc., Wallingford, CT, 2004. 14,18
[18] A. Frisch, M. Frisch, and G. Trucks, “Gaussian 03 User’s reference,” pp.23–28, 2005. 14
[19] A. Devia, V. Benavides, E. Restrepo, D. F. Arias, and R. Ospina, “Influence substrate temperature on structural properties of TiN/TiC bilayers produced by pulsed arc techniques,” Vacuum, vol. 81, no. 3, pp. 378–384, 2006. 15
[20] D. Jaeger and J. Patscheider, “A complete and self-consistent evaluation of XPS spectra of TiN,” Journal of Electron Spectroscopy and Related Phenomena,vol. 185, no. 11, pp. 523–534, 2012. 16
[21] F. L. Riley, “Silicon nitride and related materials,” Journal of the American Ceramic Society, vol. 83, no. 2, pp. 245–265, 2000. 16
[22] S. Wild, P. Grieveson, and K. H. Jack, “The crystal structure of alpha and beta silicon and germanium nitrides,” Special Ceramics, vol. 5, pp. 385–395,1972. 16
[23] A. Markwitz, H. Baumann, E. F. Krimmel, M. Rose, K. Bethge, P. Misaelides,and S. Logothetidis, “Nitrogen profiles of thin sputtered PVD silicon nitride films,” Vacuum, vol. 44, no. 3, pp. 367–370, 1993. 16
[24] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueß,P. Kroll, and R. Boehler, “Synthesis of cubic silicon nitride,” Nature, vol.400, no. 6742, pp. 340–342, 1999. 16, 17
[25] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,”The Journal of Chemical Physics, vol. 83, no. 2, pp. 735–746, 1985.17