Influencia de la inserción de átomos de Si en la formación del compuesto TiSiN por simulación DFT

Main Article Content

Juan Manuel Gonzalez
Johans Steeven Restrepo https://orcid.org/0000-0001-6788-040X
Carolina Ortega Portilla
Alexander Ruden Muñoz https://orcid.org/0000-0002-1221-5303
Federico Sequeda Osorio

Keywords

Teoría de funcionales de densidad, estructura cristalina, silicio, películas delgadas, revestimientos

Resumen

Se simularon estructuras del SiN y TiN utilizando Teoría de Funcionales de Densidad (DFT), con el fin de estudiar la influencia de la inserción de átomos de Si en la estructura del TiN en posiciones intersticiales y sustitucionales de una red cristalina cúbica centrada en las caras (FCC). Los resultados mostraron que la estructura SiN-FCC es pseudo estable, mientras que la estructura tetragonal es estable, con comportamiento cerámico. La estructura del TiN-FCC es estable con un comportamiento cerámico similar al del SiN-tetragonal. La inserción de 21% de átomos de Si en posiciones intersticiales, el material mostró alta deformación inducida, alta polarización y formación de enlaces Si-N, indicadores de una transición amorfa que podría producir un compuesto formado por granos o nanogranos de TiN embebidos en una matriz amorfa de Si-N. Mientras que al incluir 21% de Si sustituyendo átomos de Titanio, se observó una distribución más estable, que puede producir diferentes fases del compuesto estequiométrico Ti1-xSixNy.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1572 | PDF (English) Downloads 752 HTML (English) Downloads 343

Referencias

[1] A. Muñoz, J. López, A. Ruden, D. Devia, V. Benavides, J. González, and A. Devia, “Descripción de Celdas FCC para Películas Delgadas de TiAlN por
Métodos Computacionales,” Revista Colombiana de Física, vol. 39, no. 1, pp. 139–142, 2007. 12, 17

[2] J. M. González, A. Ruden, A. Neira, F. Sequeda, and P. Leroux, “Influence of Substrate Temperature on Structure and Tribological Properties of TiAlNV,”Society of Vacuum Coaters, vol. 51, pp. 666–672, 2008. 12, 15

[3] D. M. Devia, J. Restrepo, A. Ruden, J. M. González, F. Sequeda, and P. J.Arango, “The Tribological Characteristics of TiN, TiC, TiC/TiN Films Prepared by Reactive Pulsed Arc Evaporation Technique,” Society of Vacuum Coaters, vol. 505, pp. 32–36, 2009. 12

[4] A. Murcia, A. Ruden, A. Neira, J. M. Gonzalez, I. Castro, S. Brulh, and F. Sequeda, “Tribological Properties of Duplex Coating Applied in Chrome Based Steel,” Society Vacuum Coaters, vol. 505, pp. 37–43, 2009. 12

[5] M. F. Cano, J. S. Restrepo, A. Ruden, J. M. González, and F. Sequeda,“The Effect of Substrate Temperatures on Tribological Behavior of Ti-Al-N Coating Deposited by Magnetron Sputtering,” Rev. Society of Vacuum Coaters, vol. 52, pp. 37–43, 2009. 12

[6] C.-L. Chang, W.-C. Chen, P.-C. Tsai, W.-Y. Ho, and D.-Y. Wang, “Characteristics and performance of TiSiN/TiAlN multilayers coating synthesized by cathodic arc plasma evaporation,” Surface and Coatings Technology, vol.202, no. 4, pp. 987–992, 2007. 12

[7] D. Devia, R. Ospina, V. Benavides, E. Restrepo, and A. Devia, “Study of TiN/BN bilayers produced by pulsed arc plasma,” Vacuum, vol. 78, no. 1,pp. 67–71, 2005. 12

[8] S.-M. Yang, Y.-Y. Chang, D.-Y. Lin, D.-Y. Wang, and W. Wu, “Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process,” Surface and Coatings Technology, vol.202, no. 10, pp. 2176–2181, 2008. 12, 13

[9] L. Rebouta, C. J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T. C.Rojas, and J. A. Odriozola, “Hard nanocomposite Ti–Si–N coatings prepared by DC reactive magnetron sputtering,” Surface and Coatings Technology, vol.133, pp. 234–239, 2000. 13

[10] Y. H. Cheng, T. Browne, B. Heckerman, and E. I. Meletis, “Mechanicaland tribological properties of nanocomposite TiSiN coatings,” Surface and Coatings Technology, vol. 204, no. 14, pp. 2123–2129, 2010. 13

[11] R. F. Zhang and S. Veprek, “Metastable phases and spinodal decompositionin Ti 1- x Al x N system studied by ab initio and thermodynamic modeling,a comparison with the TiN–Si 3 N 4 System,” Materials Science and Engineering: A, vol. 448, no. 1, pp. 111–119, 2007. 13, 16, 17, 19

[12] M. Paulasto, F. J. J. Van Loo, and J. K. Kivilahti, “Stability and formation kinetics of TiN and silicides in the Ti/Si3N4 diffusion couple,” Le Journal de Physique IV, vol. 3, no. C7, pp. C7—-1069, 1993. 13

[13] E. V. Shalaeva, S. V. Borisov, O. F. Denisov, and M. V. Kuznetsov,“Metastable phase diagram of Ti–Si–N (O) films (C Si< 30 at.%),” Thin Solid Films, vol. 339, no. 1, pp. 129–136, 1999. 13, 15, 16, 17, 18, 19, 20

[14] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J. P. Riviere, A. Cavaleiro,and E. Alves, “Characterisation of Ti 1- x Si x N y nanocomposite films,” Surface and Coatings Technology, vol. 133, pp. 307–313, 2000. 13

[15] J. Houska, J. E. Klemberg-Sapieha, and L. Martinu, “Atomistic simulations of the characteristics of TiSiN nanocomposites of various compositions,” Surface and Coatings Technology, vol. 203, no. 22, pp. 3348–3355, 2009. 13, 19

[16] F. Kauffmann, G. Dehm, V. Schier, A. Schattke, T. Beck, S. Lang, and E. Arzt, “Microstructural size effects on the hardness of nanocrystalline TiN/amorphous-SiN x coatings prepared by magnetron sputtering,” Thin Solid Films, vol. 473, no. 1, pp. 114–122, 2005. 13, 14, 18, 19

[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,G.Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,O.Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B.Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,S.Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,M. W. Wong, C. Gonzalez, and J. A. Pople, “Gaussian. inc., wallingford, ct,2005 - gaussian 03, revicion d. i,” Gaussian, Inc., Wallingford, CT, 2004. 14,18

[18] A. Frisch, M. Frisch, and G. Trucks, “Gaussian 03 User’s reference,” pp.23–28, 2005. 14

[19] A. Devia, V. Benavides, E. Restrepo, D. F. Arias, and R. Ospina, “Influence substrate temperature on structural properties of TiN/TiC bilayers produced by pulsed arc techniques,” Vacuum, vol. 81, no. 3, pp. 378–384, 2006. 15

[20] D. Jaeger and J. Patscheider, “A complete and self-consistent evaluation of XPS spectra of TiN,” Journal of Electron Spectroscopy and Related Phenomena,vol. 185, no. 11, pp. 523–534, 2012. 16

[21] F. L. Riley, “Silicon nitride and related materials,” Journal of the American Ceramic Society, vol. 83, no. 2, pp. 245–265, 2000. 16

[22] S. Wild, P. Grieveson, and K. H. Jack, “The crystal structure of alpha and beta silicon and germanium nitrides,” Special Ceramics, vol. 5, pp. 385–395,1972. 16

[23] A. Markwitz, H. Baumann, E. F. Krimmel, M. Rose, K. Bethge, P. Misaelides,and S. Logothetidis, “Nitrogen profiles of thin sputtered PVD silicon nitride films,” Vacuum, vol. 44, no. 3, pp. 367–370, 1993. 16

[24] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueß,P. Kroll, and R. Boehler, “Synthesis of cubic silicon nitride,” Nature, vol.400, no. 6742, pp. 340–342, 1999. 16, 17

[25] A. E. Reed, R. B. Weinstock, and F. Weinhold, “Natural population analysis,”The Journal of Chemical Physics, vol. 83, no. 2, pp. 735–746, 1985.17

Artículos más leídos del mismo autor/a