Representación del álgebra de Lie, leyes de conservación y algunas soluciones invariantes para una ecuación de Emden-Fowler generalizada
Main Article Content
Keywords
Soluciones invariantes, grupo de simetrías de Lie, sistema óptimo, clasificación del álgebra de Lie, simetrías variacionales, leyes de conservación
Resumen
Se muestran todos los generadores del álgebra óptima asociados con una generalización de la ecuación de Endem-Fowler; algunos de ellos permiten dar soluciones invariantes. También se muestran las simetrías
variacionales y las respectivas leyes de conservación. Finalmente, se muestra una representación del álgebra de simetría de Lie mediante grupos de matrices.
Descargas
Referencias
[2] S. Richardson, “The emission of electricity from hot bodies,” Nature, vol. 98, no. 146, 1916. https://doi.org/10.1038/098146a0
[3] B. Mehta and R. Aris, “A note on a form of the emden-fowler equation,” Journal of Mathematical Analysis and Applications, vol. 36, no. 3, pp. 611–621, 1971.
[4] A. V. Rosa, “Modelagem matemática e simulacao do núcleo morto en catali-sadores porosos para reacoes de ordens fracionárias,” Master’s thesis, Faculdade de engenharia química de Lorena, 2005. https://sistemas.eel.usp.br/bibliotecas/antigas/2005/EQD05002.pdf
[5] A. Polyanin and V. Zaitsev, Exact solutions for ordinary differential equations. Chapman and Hall/CRC, 2002.
[6] D. J. Arrigo, Symmetry analysis of differential equations. Wiley, (2014).
[7] G. Loaiza, Y. Agudelo, and O. Duque, “Lie group symmetries complete classification for a generalized chazy equation and its equivalence group,” Revista de matemática: teoría y aplicaciones, vol. 29, no. 1, 2022.
[8] G. Loaiza, Y. Acevedo, O. Duque, and D. García, “Lie algebra classification, conservation laws, and invariant solutions for a generalization of the levinson smith equation,” International Journal of Differential Equations, vol. 2021, pp. 1–11, 2021. https://doi.org/10.1155/2021/6628243
[9] O. Duque, D. García, G. Loaiza, and Y. Acevedo, “Optimal system, reductions and lie algebra classification for kudryashov sinelshchikov equations of second order,” Examples and Counterexamples, vol. 1, p. 100033, 2021. https://doi.org/10.1016/j.exco.2021.100033
[10] P. J. Olver, Applications of Lie Groups to Differential Equations. Springer-Verlag, (1986). https://doi.org/10.1007/978-1-4684-0274-2
[11] P. E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide, ser. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2000. https://doi.org/10.1017/CBO9780511623967
[12] H. Zahid, S. Muhammad, and S. Edward, “Optimal system of subalgebras and invariant solutions for the Black-Scholes equation,” Master’s thesis, Blekinge Institute of Technology, (2009). https://www.diva-portal.org/smash/get/diva2:830112/FULLTEXT01.pdf
[13] G. Zewdie, “Lie simmetries of junction conditions for radianting stars,” Master’s thesis, University of KwaZulu-Natal, (2011). http://hdl.handle.net/10413/9840
[14] E. Noether, “Problemas de variación invariante,” Gott. Nachr., vol. 2, pp. 235–257, 1918. https://doi.org/10.1080/00411457108231446
[15] M. Nucci and P. Leach, “An old method of jacobi to find lagrangians,” Journal of Nonlinear Mathematical Physics, vol. 16, no. 4, pp. 431–441, 2009. https://doi.org/10.1142/S1402925109000467
[16] I. Gelfand and S. Fomin, Calculus of Variations, ser. Dover Books on Mathematics. Dover Publications, 2012.
[17] J. Humphreys, Introduction to Lie Algebras and Representation Theory, ser. Graduate Texts in Mathematics. Springer New York, 2012.