Pastillas sinterizadas de Al2O3 como dosímetros termoluminiscentes
Main Article Content
Keywords
Al2O3, dosimetría, termoluminiscencia.
Resumen
La verificación de la dosis de radiación recibida por el área expuesta durante eltratamiento médico es esencial para la evaluación de cualquier régimen de radioterapia.Este trabajo describe las caracteríısticas termoluminiscentes (TL)de pastillas sinterizadas de Al2O3, para su posible uso como dosímetro TL de baja dosis. Pastillas de Al2O3 sinterizadas bajo diferentes condiciones decalcinación, con un diámetro de 5 mm y un espesor de 1 mm, fueron irradiadasa diferentes dosis usando una unidad de 60Co Theratron 780Cr enaire a temperatura ambiente. La lectura se realizó en un Harshaw TLD 4500.Las principales propiedades dosimétricas del material (curva de brillo, reproducibilidadde la respuesta, reutilización, linealidad y decaimiento térmico)han sido estudiadas en detalle. La curva de brillo de las pastillas sinterizadasde Al2O3 presenta un intenso pico TL alrededor de los 165C, el cual puede ser usado para dosimetría. Los resultados muestran que las pastillas pueden serusadas en programas de control de calidad como dosímetro termoluminiscenteen el rango de dosis terapéuticas. La importancia de este trabajo radica en que el óxido de aluminio (−Al2O3) es una alternativa prometedora dentrode los materiales TL usados para dosimetría “in vivo”dentro de los programasde control de calidad.
Descargas
Los datos de descargas todavía no están disponibles.
Referencias
[1] WL. McLaughlin, AW. Boyd, KH. Chadwick, JC. Mc Donal, A. Miller. Dosimetry for Radiation Processing, ISBN 0850667402. Taylor & Francis, Londres, 1989.
[2] F. Daniels, C. Boyd, D. Saunders. Thermoluminiscense as a Research Tool . Science, ISSN 0036–8075, 117, 343–349 (1953).
[3] JR. Cameron, D. Zimmermann, G. Keney, R. Buch, R. Bland, R. Grant. Thermoluminescent radiation dosimetry utilizing LiF. Health Phys., ISSN 0017–9078, 10(1), 25–29 (1964).
[4] SG. Vaijapurkar, R. Raman, PK. Bhatnagar. Sand-a high gamma dose thermoluminescence dosimeter . RadiationMeasurements, ISSN 1350–4487, 29(2), 223–226 (1998)
[5] S. Chawla, TK. Gundu Rao, AK. Singhvi. Quartz ther-moluminescense dose and dose rate effects and their impli-cations. Radiation Measurements, ISSN 1350–4487, 29(1), 53–63 (1998)
[6] LVE. Caldas, MI. Teixeira. Commercial glass for high doses using different dosimetric techniques. Radiation Protection Dosimetry, ISSN 0144–8420, 101(1), 149–152 (2002).
[7] N. Dogan, AB. Tugrul. Dosimetric evaluation of gamma doses using irradiated lead-alkali-silicate glass. Radiation Measurements, ISSN 1350–4487, 33(2), 211–216 (2002).
[8] Pradeep Narayan, KR. Senwar, SG. Vaijapurkar, D. Kumar, PK. Bhatnagar. Application of commercial glasses for high dose measurement using the thermo-luminescent technique. Applied Radiation and Isotopes, ISSN 0969–8043, 66(1), 86–89 (2008).
[9] FDG. Rocha, ML. Oliveira, LVE. Caldas. Thin sintered Al2O3 pellets as thermoluminescent dosimeters for the therapeutic dose range. Applied Radiation and Isotopes, ISSN 0969–8043, 58(6), 719–722 (2003).
[10] FDG. Rocha, E. Okuno, LVE. Caldas, JC. Bressian, MOO. Silva. Al2O3 sintered pellets for dosimetry at radiotherapy level . Proceedings of the International Congress of IRPA No. 1 pp 351–353. Hiroshima, (Mayo 2000).
[11] FDG. Rocha, LVE. Caldas. Characterization of Al2O3 sintered pellets for dosimetric applications in radiotherapy. Journal of Radiological Protection, ISSN 0952–4746, 19(1), 51–55 (1999).
[12] E. Papin, P. Grosseau, B. Guilhot, M. Benabdesselam, P. Iacconi, D. Lapraz. Influence of the calcination conditions on the thermoluminescence of pure and doped alumina powders. Radiation Protection Dosimetry, ISSN 0144–8420, 65(1), 243–246 (1996).
[13] G. Molnár, M. Benebdesselam, J. Borossay, D. Lapraz, P. Iacconi, M. Akserold. Influence of the irradiation temperature on TL sensitivity of Al2O3:C. Radiation Measurements, ISSN 1350–4487, 33(5), 619–623 (2001).
[14] V. Kortov, I. Milman. Some new data on thermoluminescent properties of dosimetric _−Al2O3 crystals. Radiation Protection Dosimetry, ISSN 0144–8420, 65(1–4), 179–184 (1996).
[15] MA. Duch, M. Ginjaume, H. Chakkor, X. Ortega, N. Jornet, M. Ribas. Thermoluminescent dosimetry applied to in vivo dose measurements for total body irradiations techniques. Radiotherapy & Oncology, ISSN 0167–8140, 47, 319–324 (1998).
[16] A. Bartolotta, M. Brai, V. Caputo, R. Diliberto, D. Dimariano, G. Ferrara, P. Puccio, AS. Santamaria. The response behaviour of LiF: Mg,Cu,P thermoluminescent dosimeters to high energy electron beams used in radiotherapy. Physics in Medicine and Biology, ISSN 0031–9155, 40, 211–220 (1995).
[17] AD. Belmonte, JMD. Baraja, ML. Manso, JRS. del Rio. Exit dose as a method to verify external radiotherapy treatments in vivo by TLD’S. Physica Medica, ISSN 1120–1797, 17, 7–9 (2001).
[18] M. Essers, BJ. Mijnheer. In vivo dosimetry during external photon beam radiotherapy. International Journal of Radiation Oncology-Biology-Physics, ISSN 0360–3016, 43, 245–259 (1999).
[19] DC. Weber, P. Nouet, JM. Kurtz, AS. Allal. Assessment of target dose delivery in anal cancer using in vivo thermoluminescent dosimetry. Radiotherapy & Oncology, ISSN 0167–8140, 59, 39–43 (2001).
[20] JL. Muñiz Gutiérrez. Métodos experimentales de do-simetría postal para el control de calidad en radioterapia basados en LiF: Mg, Ti (TLD-100) y LiF: Mg, Cu,P (GR-200): Aplicación de métodos numéricos al análisis de las curvas de termoluminiscencia. Madrid, 1999, 203 h. Tesis Doctoral (Doctor en Ciencias Física). Universidad Complutense de Madrid. Facultad de Ciencias Físicas. Departamento de Física de Materiales.
[21] J. Azorín Nieto. Estudio de las propiedades termoluminiscentes y ópticas de los principales materiales dosimétricos. México, D.F. 1993, p 200h. Tesis Doctoral (Doctor en Ciencias Física). Universidad Autónoma Metropolitana - Izatapalapa.
[22] AJJ. Boss. High sensitivity thermoluminiscense dosimetry. Nuclear Instruments and Methods in Physics Research B, ISSN 0168–583X, 184(1–2), 3–28 (2001).
[23] AJJ. Boss. Theory of thermoluminescence. Radiation Measurements, ISSN 1350–4487, 41, S45–S56 (2007).
[24] M. Springis, P. Kulis, A. Veispals, V. Tale, I. Tale. Origin of the 430 K TL paek in thermochemically reduced _−Al2O3. Radiation Protection Dosimetry, ISSN 0144–8420, 65(1), 231–234 (1996).
[25] JI. Herrera Cuitiva. Estudio de las principales características dosimétricas del TLD - 100. Montería, 2008, 90 h. Trabajo de grado (Físico). Universidad de Córdoba. Facultad de Ciencias e Ingenierías. Departamento de Física y Electrónica.
[26] V. Kortov. Materials for thermoluminescent dosimetry: Current status and future trends. Radiation Measurements, ISSN 1350–4487, 42, 576–581 (2007).
[2] F. Daniels, C. Boyd, D. Saunders. Thermoluminiscense as a Research Tool . Science, ISSN 0036–8075, 117, 343–349 (1953).
[3] JR. Cameron, D. Zimmermann, G. Keney, R. Buch, R. Bland, R. Grant. Thermoluminescent radiation dosimetry utilizing LiF. Health Phys., ISSN 0017–9078, 10(1), 25–29 (1964).
[4] SG. Vaijapurkar, R. Raman, PK. Bhatnagar. Sand-a high gamma dose thermoluminescence dosimeter . RadiationMeasurements, ISSN 1350–4487, 29(2), 223–226 (1998)
[5] S. Chawla, TK. Gundu Rao, AK. Singhvi. Quartz ther-moluminescense dose and dose rate effects and their impli-cations. Radiation Measurements, ISSN 1350–4487, 29(1), 53–63 (1998)
[6] LVE. Caldas, MI. Teixeira. Commercial glass for high doses using different dosimetric techniques. Radiation Protection Dosimetry, ISSN 0144–8420, 101(1), 149–152 (2002).
[7] N. Dogan, AB. Tugrul. Dosimetric evaluation of gamma doses using irradiated lead-alkali-silicate glass. Radiation Measurements, ISSN 1350–4487, 33(2), 211–216 (2002).
[8] Pradeep Narayan, KR. Senwar, SG. Vaijapurkar, D. Kumar, PK. Bhatnagar. Application of commercial glasses for high dose measurement using the thermo-luminescent technique. Applied Radiation and Isotopes, ISSN 0969–8043, 66(1), 86–89 (2008).
[9] FDG. Rocha, ML. Oliveira, LVE. Caldas. Thin sintered Al2O3 pellets as thermoluminescent dosimeters for the therapeutic dose range. Applied Radiation and Isotopes, ISSN 0969–8043, 58(6), 719–722 (2003).
[10] FDG. Rocha, E. Okuno, LVE. Caldas, JC. Bressian, MOO. Silva. Al2O3 sintered pellets for dosimetry at radiotherapy level . Proceedings of the International Congress of IRPA No. 1 pp 351–353. Hiroshima, (Mayo 2000).
[11] FDG. Rocha, LVE. Caldas. Characterization of Al2O3 sintered pellets for dosimetric applications in radiotherapy. Journal of Radiological Protection, ISSN 0952–4746, 19(1), 51–55 (1999).
[12] E. Papin, P. Grosseau, B. Guilhot, M. Benabdesselam, P. Iacconi, D. Lapraz. Influence of the calcination conditions on the thermoluminescence of pure and doped alumina powders. Radiation Protection Dosimetry, ISSN 0144–8420, 65(1), 243–246 (1996).
[13] G. Molnár, M. Benebdesselam, J. Borossay, D. Lapraz, P. Iacconi, M. Akserold. Influence of the irradiation temperature on TL sensitivity of Al2O3:C. Radiation Measurements, ISSN 1350–4487, 33(5), 619–623 (2001).
[14] V. Kortov, I. Milman. Some new data on thermoluminescent properties of dosimetric _−Al2O3 crystals. Radiation Protection Dosimetry, ISSN 0144–8420, 65(1–4), 179–184 (1996).
[15] MA. Duch, M. Ginjaume, H. Chakkor, X. Ortega, N. Jornet, M. Ribas. Thermoluminescent dosimetry applied to in vivo dose measurements for total body irradiations techniques. Radiotherapy & Oncology, ISSN 0167–8140, 47, 319–324 (1998).
[16] A. Bartolotta, M. Brai, V. Caputo, R. Diliberto, D. Dimariano, G. Ferrara, P. Puccio, AS. Santamaria. The response behaviour of LiF: Mg,Cu,P thermoluminescent dosimeters to high energy electron beams used in radiotherapy. Physics in Medicine and Biology, ISSN 0031–9155, 40, 211–220 (1995).
[17] AD. Belmonte, JMD. Baraja, ML. Manso, JRS. del Rio. Exit dose as a method to verify external radiotherapy treatments in vivo by TLD’S. Physica Medica, ISSN 1120–1797, 17, 7–9 (2001).
[18] M. Essers, BJ. Mijnheer. In vivo dosimetry during external photon beam radiotherapy. International Journal of Radiation Oncology-Biology-Physics, ISSN 0360–3016, 43, 245–259 (1999).
[19] DC. Weber, P. Nouet, JM. Kurtz, AS. Allal. Assessment of target dose delivery in anal cancer using in vivo thermoluminescent dosimetry. Radiotherapy & Oncology, ISSN 0167–8140, 59, 39–43 (2001).
[20] JL. Muñiz Gutiérrez. Métodos experimentales de do-simetría postal para el control de calidad en radioterapia basados en LiF: Mg, Ti (TLD-100) y LiF: Mg, Cu,P (GR-200): Aplicación de métodos numéricos al análisis de las curvas de termoluminiscencia. Madrid, 1999, 203 h. Tesis Doctoral (Doctor en Ciencias Física). Universidad Complutense de Madrid. Facultad de Ciencias Físicas. Departamento de Física de Materiales.
[21] J. Azorín Nieto. Estudio de las propiedades termoluminiscentes y ópticas de los principales materiales dosimétricos. México, D.F. 1993, p 200h. Tesis Doctoral (Doctor en Ciencias Física). Universidad Autónoma Metropolitana - Izatapalapa.
[22] AJJ. Boss. High sensitivity thermoluminiscense dosimetry. Nuclear Instruments and Methods in Physics Research B, ISSN 0168–583X, 184(1–2), 3–28 (2001).
[23] AJJ. Boss. Theory of thermoluminescence. Radiation Measurements, ISSN 1350–4487, 41, S45–S56 (2007).
[24] M. Springis, P. Kulis, A. Veispals, V. Tale, I. Tale. Origin of the 430 K TL paek in thermochemically reduced _−Al2O3. Radiation Protection Dosimetry, ISSN 0144–8420, 65(1), 231–234 (1996).
[25] JI. Herrera Cuitiva. Estudio de las principales características dosimétricas del TLD - 100. Montería, 2008, 90 h. Trabajo de grado (Físico). Universidad de Córdoba. Facultad de Ciencias e Ingenierías. Departamento de Física y Electrónica.
[26] V. Kortov. Materials for thermoluminescent dosimetry: Current status and future trends. Radiation Measurements, ISSN 1350–4487, 42, 576–581 (2007).