α-MoO3 thin films prepared by spray pyrolysis

Main Article Content

H M Martínez
J Torres
L D López-Carreño
J E Alfonso
Luis Moreno
A Pardo

Keywords

MoO3, Spray Pyrolysis, sensor CO, SEM, RX.

Abstract

MoO3 thin films have been deposited on clean glass slides using the spray pyrolysis technique. The samples were grown with different thicknesses by spraying on common glass substrates a solution of(ammoniummolybdatetetrahydrate) ((NH3)6Mo7O244H2O). The samples were characterized by X-ray diffraction (XRD), infrared spectroscopy, scanning electron microscopy (SEM) and electrically through electrical resistivity measurements as a function of temperature. It was found that samples present crystalline structure associated with the alpha phase of MoO3 grown with preferential direction of growth along the planes (0k0). As result of increasing the volume of precursor solution sample surface becomes porous. The change in electrical resistance of MoO3 films by exposure to carbon monoxide (CO) at room temperature, makes the films obtained by this technique could be promising in its use in gas sensing devices at room temperature.

PACS: 81.05.Hd  72.80.Jc

Downloads

Download data is not yet available.
Abstract 884 | PDF (Español) Downloads 247

References

[1] T. Ivanova, K.A. Gesheva, G. Popkirov, M. Ganchev, and E. Tzvetkova. Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices.Materials Science and Engineering B, ISSN 0921-5107, 119, 232-239 (2005).

[2] Y. Liang, S. Yang, Z. Yi, X. Lei, J. Sun and Y. Zhou. Low temperature synthesis of a stable MoO2 as suitable anode materials for lithium batteries. Material Science and Engineering B, ISSN 0921-5107, 121, 152-155 (2005).

[3] M. A. Larrubia, and G. Busca. An ultraviolet-visible-near infrared study of the electronic structure of oxide-supported vanadia-tungsta and vanadia-molybdena. Materials Chemistry and Physics, ISSN 0254-0584, 72, 337-346 (2001).

[4] A. K. Prasad, P. I. Gouma, D. J. Kubinski, J. H. Visser, R. E. Soltis and P. J. Schmitz. Reactively sputtered MoO3 films for ammonia sensing. Thin Solid Films, ISSN 0040-6090, 436, 46-51 (2003).

[5] A. Bouzidi, N. Benradame, H. Tabet-Derraz, C. Mathieu, B. Khelifa and R. Desfeux. Effect of substrate temperature on the structural and optical properties of MoO3 thin films by spray pyrolysis technique.Material Science and Engineering B, ISSN 0921-5107, 97, 5-8 (2003).

[6] C.V. Ramana, V.V. Atuchin, V.G. Kesler, V.A. Kochubey, L.D. Pokrovsky, V. Shutthanandan, U. Becker, and R.C. Ewing. Growth and surface characterization of sputter-deposited molybdenum oxide thin films. Applied Surface Science, ISSN 0169-4332, 253, 5368-5374 (2007).

[7] R. Cardenas, J. Torres and E. Alfonso. Optical characterization of MoO3 thin films produced by continuos wave CO2 laser-assisted evaporation. Thin Solid Films, ISSN 0040-6090, 478, 146-151 (2005).

[8] R. Martinez, J.R. Vargas, V. Santes, and E. Gomez. Preparation of molybdenum oxide thin films by MOCVD. Journal of Alloys and Compounds, ISSN 0925-8388, 434-435, 701-703 (2007).

[9] A. Klisinska, A.S. Mamede, and E.M. Gaigneaux. Effect of the nature of the precursor on the morphology of MoO3 thin films spin-coated on Si (100). Thin Solid Films, ISSN 0040-6090, 516, 2904-2912 (2008).

[10] S.S. Sunu, E. Prabhu, V. Javaraman, K. I. Gnananaseka, T.K. Seshagiri and T. Gnanasekaran. Electrical conductivity and gas sensing properties of MoO3. Sensor and Actuators B, ISSN 0925-4005, 101, 161-174 (2004).

[11] T. Ressler, O. Timpe, T. Neisius, j. Find, G. Mestl, M. Dieterle and R. Schlogl. Time-resolved XAS investigation of the reduction/oxidation of MoO3−x. Journal of Catalysis, ISSN 0021-9517, 191, 75-85 (2000).

[12] G. Korotcenkov. Metal-oxides for solid-state gas sensors: What determines our choice? .Materials Science and Engineering B, ISSN 0921-5107, 139, 1-23 (2007).

[13] M. Ferroni, V. Guidi, G.Martinelli, P. Nelli, M. Sacerdoti, and G. Sberveglieri. Characterization of a Molybdenum oxide sputtered thin film as a sensor . Thin solid films, ISSN 0040-6090, 307, 148-151 (1997).

[14] O. M. Hussain and K. S. Rao. Characterization of activated reactive evaporated MoO3 thin films for gas sensor applications . Materials Chemistry and Physics, ISSN 0254-0584, 80, 638-646 (2003).

[15] S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, and P.S. Patil. Concen- tration dependent structural, optical and electrochromic properties of MoO3 thin films. Int. J. Electrochem. Sci., ISSN 1452-3981, 3, 953-960 (2008).

[16] L. Seguin, M. Figlarz, R Cavagnat, J.C. Lass`egues. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3-xH2O molybdenum trioxides hydrates. Spectroquimica Acta Part A, ISSN 0584-8539, 51, 1323-1344 (1995).

[17] J. V. Silveira, Jerias A. Batista, Gilberto D. Saraiva, Josue Mendes Filho, Antonio G. Sousza Filho, Shi Hu, and Xun Wang. Temperature dependent behavior of single walled MoO3 nanotubes: A Raman spectroscopy study. Vibrational Spectroscopy, ISSN 0924-2031, 54, 179-183 (2010).

[18] E. Haro-Poniatowski, M. Jouanne, J. F. Morhange, C. Julien, R. Diamant, M. Fern´andez-Guasti, G. A. Fuentes, and J. C. Alonso. Micro-Raman characterization of WO3 and MoO3 thin films obtained by pulsed laser irradiation. Applied Surface Science, ISSN 0169-4332, 127-129, 674-678 (1998).

[19] Jaswinder Kawr V. D. Vankar, M. C. Bhatnagar. Effect of MoO3 addition on the NO2 sensing properties of SnO2 thin films. Sensors and Actuators B, ISSN 0925-4005, 133, 650-655 (2008).