Marcas digitales y empresas de la Web 3.0: análisis de redes sociales y análisis temático de las actividades de los usuarios y patrones de comportamiento del comercio minorista en línea

Main Article Content

Fatemeh Sharafi Farzad https://orcid.org/0000-0002-4568-8078
Shaghayegh Kolli https://orcid.org/0000-0002-0101-352X
Tohid Soltani https://orcid.org/0000-0002-5597-326X
Saeid Ghanbary https://orcid.org/0000-0002-6689-8488

Keywords

empresa Web 3.0 enterprise, análisis de redes sociales, análisis temático, comercio electrónico, patrón de comportamiento del cliente, DigiKala, compras en línea, Twitter

Resumen

Teniendo en cuenta la importancia de las empresas Web 3.0 en el comercio minorista en línea, este artículo explica cómo operan estas empresas en el contexto iraní. DigiKala, es un minorista en línea que ha sido una de las empresas emergentes (start-ups) más exitosas en Irán y ha ganado entre el 85 y el 90% del mercado de minoristas en línea del país. Esta empresa ha comenzado a transformar su cadena de valor hacia un negocio de plataforma. Por otro lado, Twitter como microblogging de redes sociales gratuito, ha sido una de las herramientas más importantes en el mercado en línea, ya que los clientes, especialmente en los mercados digitales, comparten sus comentarios positivos y negativos con respecto a su experiencia de compra. En esta investigación, en primer lugar, se utilizó el método de análisis de redes sociales (SNA) para comprender las relaciones y los nodos individuales en la red. Luego, se aplicó un método de análisis temático para analizar los trinos (tweets) enviados para lograr los patrones de comportamiento de los usuarios. El uso de diferentes redes sociales, como Twitter, y compartir los comentarios también es válido para DigiKala como empresa Web 3.0. Esta investigación estudió la red de tweets en eventos especiales, a saber, el Black Friday, en el que DigiKala ofreció descuentos considerables a sus clientes. Algunas implicaciones de nuestra investigación también se presentan al final de este artículo.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1459 | PDF (English) Downloads 646

Referencias

Achtenhagen, L. (2017). Media Entrepreneurship—Taking Stock and Moving Forward, International Journal of Media Management, 19(1), 1-10

Amati, G., Angelini, S., Capri, F., Gambosi, G., Rossi, G., & Vocca, P. (2016a). Modelling the temporal evolution of the retweet graph. IADIS International Journal on Computer Science & Information Systems, 11(2).

Amati, G., Angelini, S., Capri, F., Gambosi, G., Rossi, G., & Vocca, P. (2016b). Twitter temppral evolution analysis: comparing event and topic driven retweet graphs. IADIS International Journal on Computer Science & Information Systems, 11(2).

Bagheri, S. K., Raoufi, P., Samandar Ali Eshtehardi, M., Shaverdy, S., Ramezani Akbarabad, B., Moghaddam, B., & Mardani, A. (2018). Using the crowd for business model innovation: the case of Digikala. R&D Management.

Bakhshizadeh, K., Haji Jafar, A., & Nasiri, H. (2018). Eliciting Mental Map of the Customers of Digikala E-Stores Using Zaltman Metaphor Elicitation Technique (ZMET). Journal of Business Management, 10(1), 49-72. doi:10.22059/jibm.2017.215675.2242

Berger, J., & Milkman, K. L. (2012). What makes online content viral?. Journal of marketing research, 49(2), 192-205.

Bulearca, M., & Bulearca, S. (2010). Twitter: a viable marketing tool for SMEs? Global business and management research, 2(4), 296.


Campbell, W. M., Dagli, C. K., & Weinstein, C. J. (2013). Social network analysis with content and graphs. Lincoln Laboratory Journal, 20(1), 61-81.

Chappuis, B., Gaffe, B., & Parvizi, P. (2011). Are your customers becoming. McKinsey Quarterly.

Cheung, C. M., & Lee, M. K. (2008). Online consumer reviews: Does negative electronic word-of-mouth hurt more? AMCIS 2008 Proceedings, 143.

Chiang, P., Hui Lo, S., & Wang, L.-H. (2017). Customer Engagement Behaviour in Social Media Advertising:Antecedents and Consequences. Contemporary Management Research.

Chiosa, A. R., & Anastasiei, B. (2017). Negative Word-of-Mouth: Exploring the Impact of Adverse Messages on Consumers’ Reactions on Facebook. Review of conomic and business studies.

Choi, D., & Kim, P. (2013, March). Sentiment analysis for tracking breaking events: a case study on twitter. In Asian Conference on Intelligent Information and Database Systems (pp. 285-294). Springer, Berlin, Heidelberg.

Choi, D., Hwang, M., Kim, J., Ko, B.-K., & Kim, P. (2014). Tracing trending topics by analyzing the sentiment status of tweets. Comput. Sci. Inf. Syst., 11(1), 157-169.

Choudary, S. P. (2015), Platform Scale: How an emerging business model helps startups build large empires with minimum investment, Platform thinking lab
Ciasullo, M. V., Troisi, O., & Cosimato, S. (2018). How Digital Platforms Can Trigger Cultural Value Co-Creation?—A Proposed Model. Journal of service science and management, 11(02), 161.

Cogburn, D. L., & Espinoza-Vasquez, F. K. (2011). From networked nominee to networked nation: Examining the impact of Web 2.0 and social media on political participation and civic engagement in the 2008 Obama campaign. Journal of Political Marketing, 10(1-2), 189-213.

Dholakia, U. M., Bagozzi, R. P., & Pearo, L. K. (2004). A social influence model of consumer participation in network-and small-group-based virtual communities. International Journal of Research in Marketing, 241-263.

Evangelopoulos, N., Magro, M. J., & Sidorova, A. (2012). The dual micro/macro informing role of social network sites: can Twitter macro messages help predict stock prices? Informing Science, 15.

Fuchs, C. (2017). Social media: A critical introduction: Sage.

Gallaugher, J., & Ransbotham, S. (2010). Social media and customer dialog management at Starbucks. MIS Quarterly Executive, 9(4).

González-Ibánez, R., Muresan, S., & Wacholder, N. (2011). Identifying sarcasm in Twitter: a closer look. Paper presented at the Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers-Volume 2.

Hanna, R., Rohm, A., & Crittenden, V. L. (2011). We’re all connected: The power of the social media ecosystem. Business horizons, 54(3), 265-273.

Harary, F. (1994). Graph Theory: Addison-Wesley.

Hennig-Thurau, T., Malthouse, E. C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., & Skiera, B. (2010). The impact of new media on customer relationships. Journal of service research, 13(3), 311-330.

Hornikx, J., & Hendriks, B. (2015). Consumer Tweets about Brands:A Content Analysis of Sentiment Tweets about Goods and Services. Journal of Creative Communications, 176–185.

Ibrahim, N. F., & Wang, X. (2019). Decoding the sentiment dynamics of online retailing customers: Time series analysis of social media. Computers in Human Behavior, 96, 32-45.

Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American society for information science and technology, 60(11), 2169-2188.

Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68.

Khajeheian, D. (2016). Telecommunication Policy: Communication Act Update. Global Media Journal-Canadian Edition, 9(1), 135-141.

Khajeheian, D. (2017). Media entrepreneurship: A consensual definition. AD-minister, (30), 91-113.

Labafi, S., & Williams, I. (2018). Competitiveness of Small Media Firms Competitiveness in Emerging Markets (pp. 263-282): Springer.

Lennon, S. J., Johnson, K. K., & Lee, J. (2011). A perfect storm for consumer misbehavior: Shopping on Black Friday. Clothing and Textiles Research Journal, 29(2), 119-134.


Maia, M., Almeida, J., & Almeida, V. (2008). Identifying user behavior in online social networks. Paper presented at the Proceedings of the 1st workshop on Social network systems.

Malehmir, F., Maeen, M., & Jahangir, M. R. (2017). A study on the Interaction of Motivations and Online Shopping Experience in E-Commerce Success in Digikala Company. International Journal of Scientific Study, 5(5).

Marsh, K. L., Richardson, M. J., & Schmidt, R. C. (2009). Social connection through joint action and interpersonal coordination. Topics in Cognitive Science, 1(2), 320-339.

Martínez-Cañas, R., Ruiz-Palomino, P., Linuesa-Langreo, J., & Blázquez-Resino, J. J. (2016). Consumer participation in co-creation: an enlightening model of causes and effects based on ethical values and transcendent motives. Frontiers in psychology, 7, 793.

Munger, T., & Zhao, J. (2015). Identifying influential users in on-line support forums using topical expertise and social network analysis. Paper presented at the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

Parker, G. G., Van Alstyne, M. W., & Choudary, S. P. (2016). Platform revolution: How networked markets are transforming the economyand how to make them work for you: WW Norton & Company.

Puschmann, T., & Alt, R. (2016). Sharing economy. Business & Information Systems Engineering, 58(1), 93-99.

Qualman, E. (2013). Socialnomics: How Social Media Transforms the Way We Live and Do Business. New Jersey: John Wiley & Sons.

Reillier, L. C., & Reillier, B. (2017). Platform strategy: How to unlock the power of communities and networks to grow your business: Routledge.
Simpson, L., Taylor, L., O'Rourke, K., & Shaw, K. (2011). An analysis of consumer behavior on Black Friday. American International Journal of Contemporary Research.

Smith, M. A., Shneiderman, B., Milic-Frayling, N., Mendes Rodrigues, E., Barash, V., Dunne, C., ... & Gleave, E. (2009, June). Analyzing (social media) networks with NodeXL. In Proceedings of the fourth international conference on Communities and technologies (pp. 255-264). ACM.‏

Thackeray, R., Neiger, B. L., Hanson, C. L., & McKenzie, J. F. (2008). Enhancing promotional strategies within social marketing programs: use of Web 2.0 social media. Health promotion practice, 9(4), 338-343.

Thomas, J., Cara O, P., Emelia , H., & Robbins, K. (2012). Social media and negative word of mouth: strategies for handing unexpecting comments. Atlantic Marketing Journal, 87-108.

Wang, J. C., & Chang, C. H. (2013). How online social ties and product-related risks influence purchase intentions: A Facebook experiment. Electronic Commerce Research and Applications, 337–346.

Yadav, M. S., De Valck, K., Hennig-Thurau, T., Hoffman, D. L., & Spann, M. (2013). Social commerce: a contingency framework for assessing marketing potential. Journal of interactive marketing, 27(4), 311-323.

Yusheng, L., Shang, Y., & Yang, Y. (2017). Clustering coefficients of large networks. Information Sciences.

Zarantonello, L., Romani, S., Grappi, S., & Bagozzi, R. P. (2016). Brand hate. Journal of Product & Brand Management, 25(1), 11-25.

Zeng, X., & Wei, L. (2013). Social ties and user content generation: Evidence from Flickr. Information Systems Research, 71-87.