Some indefined integrals containing to the generalized hypergeometric function
Main Article Content
Keywords
generalized hypergeometric function, recurrence relations, indefined integrals.
Abstract
In 1999 Nina Virchenko have considered the τ-generalization of Gauss hypergeometric function 2R1(a, b; c; τ ; z) with a set of recurrence relations and differentiation formulas. In this paper is obtained some indefined integrals associated with the generalized hypergeometric function and some particular cases.
MSC: 33D15, 33D90, 33D60, 34M03, 62E15
Downloads
Download data is not yet available.
References
[1] G. E. Andrews, R. Askey and R. Roy. Special Functions, ISBN 0–521–62321–9. New York: Cambridge University Press, 1, 1999.
[2] James B. Seaborn. Hypergeometric functions and their applications, ISBN 0–387– 97558–6. NewYork: Springer–Verlag, 1991.
[3] A. M. Mathai and R. K. Saxena. Generalized hypergeometric functions with applications in Statistics and physical Sciences, ISBN 0–387–06482. NewYork: Springer–Verlag, 1970.
[4] A. M. Mathai and R. K. Saxena. Generalized hypergeometric functions with applications in Statistics and physical Sciences, ISBN 978–3540064824. NewYork: Springer–Verlag, 1973.
[5] Y. Ben Nakhi and S. L. Kalla. A generalized beta functions and associated probability density. International journal of mathematics and mathematics sciences, ISSN 0161–1712, 30(8), 467–478 (2002).
[6] N. Virchenko. On some generalizations of the functions of hypergeometric type. Fractional Calculus and Applied Analysis, ISSN 1311–0454, 2(3), 233–244 (1999).
[7] Jaime Castillo. Algunas integrales impropias con l´ımites de integración infinitos que involucran a la generalización _ de la funci´on hipergeom´etrica de Gauss. Ingeniería y Ciencia, ISSN 1794–9165, 3(5), 67–85 (2007).
[8] Jaime Castillo. Algunas integrales que involucran a la funci´on hipergeométrica generalizada. Ingeniería y Ciencia, ISSN 1794–9165, 4(7), 7–22 (2008).
[9] Anatolii Platonovich Prudnikov, Yurii Aleksandrovich Brychkov and Oleg Igorevich Marichev. Integrals and Series: more special functions, ISBN 978– 2881246821. New York: Gordon and Breach Science Publishers, 3, 1992.
[2] James B. Seaborn. Hypergeometric functions and their applications, ISBN 0–387– 97558–6. NewYork: Springer–Verlag, 1991.
[3] A. M. Mathai and R. K. Saxena. Generalized hypergeometric functions with applications in Statistics and physical Sciences, ISBN 0–387–06482. NewYork: Springer–Verlag, 1970.
[4] A. M. Mathai and R. K. Saxena. Generalized hypergeometric functions with applications in Statistics and physical Sciences, ISBN 978–3540064824. NewYork: Springer–Verlag, 1973.
[5] Y. Ben Nakhi and S. L. Kalla. A generalized beta functions and associated probability density. International journal of mathematics and mathematics sciences, ISSN 0161–1712, 30(8), 467–478 (2002).
[6] N. Virchenko. On some generalizations of the functions of hypergeometric type. Fractional Calculus and Applied Analysis, ISSN 1311–0454, 2(3), 233–244 (1999).
[7] Jaime Castillo. Algunas integrales impropias con l´ımites de integración infinitos que involucran a la generalización _ de la funci´on hipergeom´etrica de Gauss. Ingeniería y Ciencia, ISSN 1794–9165, 3(5), 67–85 (2007).
[8] Jaime Castillo. Algunas integrales que involucran a la funci´on hipergeométrica generalizada. Ingeniería y Ciencia, ISSN 1794–9165, 4(7), 7–22 (2008).
[9] Anatolii Platonovich Prudnikov, Yurii Aleksandrovich Brychkov and Oleg Igorevich Marichev. Integrals and Series: more special functions, ISBN 978– 2881246821. New York: Gordon and Breach Science Publishers, 3, 1992.