Some indefined integrals containing to the generalized hypergeometric function

Main Article Content

Jaime Castillo Pérez
Leda Galué

Keywords

generalized hypergeometric function, recurrence relations, indefined integrals.

Abstract

In 1999 Nina Virchenko have considered the   τ-generalization of Gauss hypergeometric function 2R1(a, b; c; τ ; z) with a set of recurrence relations and differentiation formulas. In this paper is obtained some indefined integrals associated with the generalized hypergeometric function and some particular cases.

MSC: 33D15, 33D90, 33D60, 34M03,  62E15

Downloads

Download data is not yet available.
Abstract 1375 | PDF (Español) Downloads 552

References

[1] G. E. Andrews, R. Askey and R. Roy. Special Functions, ISBN 0–521–62321–9. New York: Cambridge University Press, 1, 1999.

[2] James B. Seaborn. Hypergeometric functions and their applications, ISBN 0–387– 97558–6. NewYork: Springer–Verlag, 1991.

[3] A. M. Mathai and R. K. Saxena. Generalized hypergeometric functions with applications in Statistics and physical Sciences, ISBN 0–387–06482. NewYork: Springer–Verlag, 1970.

[4] A. M. Mathai and R. K. Saxena. Generalized hypergeometric functions with applications in Statistics and physical Sciences, ISBN 978–3540064824. NewYork: Springer–Verlag, 1973.

[5] Y. Ben Nakhi and S. L. Kalla. A generalized beta functions and associated probability density. International journal of mathematics and mathematics sciences, ISSN 0161–1712, 30(8), 467–478 (2002).

[6] N. Virchenko. On some generalizations of the functions of hypergeometric type. Fractional Calculus and Applied Analysis, ISSN 1311–0454, 2(3), 233–244 (1999).

[7] Jaime Castillo. Algunas integrales impropias con l´ımites de integración infinitos que involucran a la generalización _ de la funci´on hipergeom´etrica de Gauss. Ingeniería y Ciencia, ISSN 1794–9165, 3(5), 67–85 (2007).

[8] Jaime Castillo. Algunas integrales que involucran a la funci´on hipergeométrica generalizada. Ingeniería y Ciencia, ISSN 1794–9165, 4(7), 7–22 (2008).

[9] Anatolii Platonovich Prudnikov, Yurii Aleksandrovich Brychkov and Oleg Igorevich Marichev. Integrals and Series: more special functions, ISBN 978– 2881246821. New York: Gordon and Breach Science Publishers, 3, 1992.