Lógica básica con afirmación alterna

Main Article Content

Manuel Sierra A.

Keywords

affirmation, alternate affirmation, incompatibility, determinability.

Abstract

The language of the system extends language of the classical logic when including an operator for the notion of alternate affirmation (in contrast to the classical affirmation or usual affirmation), and also operators of incompatibility and determinability between the pair of operators negation and alternate affirmation. The system is characterized by a semantics of valuations, with which no-equivalence between both operators affirmation is shown. The system collapse in the classical logic if this equivalence is required. They are generated two intermediate systems when it is required by a side that the alternate affirmation imply classical affirmation and the other hand the reciprocal implication.

MSC: 03BXX, 03B45, 03B53

Downloads

Download data is not yet available.
Abstract 824 | PDF (Español) Downloads 435

References

[1] X. Caicedo, Elementos de lógica y calculabilidad, Universidad de los Andes, Bogotá, 1990.

[2] W. Carnielli y J. Marcos, A Taxonomy of C-Systems, Paraconsistency - the Logical Way to the Inconsistent, Lecture Notes in Pure and Applied Mathematics, Ed. Marcel Dekker, New York, 228, 2002.

[3] N. Da Costa, Inconsistent Formal Systems, UFPR, Curitiba, 1993.

[4] A. Hamilton, Lógica para matemáticos, Paraninfo S.A, Madrid, 1981.

[5] G. Hughes y M. Cresswell An Introduction to Modal Logic, Londres, Methuen, 1968.

[6] M. Sierra, Lógica básica paraconsistente y paracompleta y algunas de sus extensiones, Revista Universidad EAFIT, 133, 2004.

[7] M. Sierra, Lógica Básica con Aceptación Fuerte, Revista Boletín de Matemáticas, IX (1), 2002.