Ubicación óptima de generación distribuida en sistemas de energía eléctrica

Main Article Content

Jesús María López–Lezama
Antonio Padilha–Feltrin
Luis Alfonso Gallego Pareja

Keywords

flujo de potencia óptimo, generación distribuida, precios marginales locales

Resumen

En este artículo se presenta una metodología para la ubicación óptima de generación distribuida en sistemas de energía eléctrica. Las barras candidatas para ubicar la generación distribuida son identificadas basándose en los precios marginales locales. Estos precios son obtenidos al resolver un flujo de potencia óptimo (OPF) y corresponden a los multiplicadores de Lagrange de las ecuaciones de balance de potencia activa en cada una de las barras del sistema. Para incluir la generación distribuida en el OPF, ésta se ha modelado como una inyección negativa de potencia activa. La metodología consiste en un proceso no lineal iterativo en donde la generación distribuida es ubicada en la barra con el mayor precio marginal. Se consideraron tres tipos de generación distribuida: 1) motores de combustión interna, 2) turbinas a gas y 3) microturbinas. La metodología propuesta es evaluada en el sistema IEEE de 30 barras. Los resultados obtenidos muestran que la generación distribuida contribuye a la disminución de los precios nodales y puede ayudar a solucionar problemas de congestión en la red de transmisión.

PACS: 88.80.H-, 88.50.Mp

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 840 | PDF Downloads 1198

Referencias

[1] T. Ackermann, G. Andersson and L. Soder. Distributed generation: a definition. Electric Power Systems Research, ISSN 0378–7796, 57(3), 195–204 (2001).

[2] CIRED Working Group No 4 on Dispersed Generation Preliminary Report for Discussion at CIRED 1999 (International Conference on Electricity Distribution), Belgium, 1999.

[3] CIGRE Working GroupWG 37–23. Impact of increasing contribution of dispersed generation of the power system, 1997.

[4] G. Celli, E. Ghiani, S. Mocci and F. Pilo. A multiobjetive evolutionary algorithm for the sizing and siting of distributed generation. IEEE Transactions on Power Systems, ISSN 0885-8950, 20(2), 750–757 (2005).

[5] C. Borges and M. Falc˜ao. Optimal distributed generation allocation for reliability losses and voltage improvement . International Journal of Electrical Power & Energy Systems, ISSN 0142–0615, 28(6), 413–420 (2006).

[6] W. Rosehart and E. Nowicki. Optimal placement of distribution generation. Proceedings of the 14th Power System Computation Conference, section 11 paper 2, 2001.

[7] D. H. Popovic, J.A. Greatbanks, M. Begovic and A. Pergel Placement of distributed generators and reclosers for distribution network security and reliability. International Journal of Electrical Power & Energy Systems, ISSN 0142–0615, 27(5–6), 398–408(2005).

[8] H. L.Willis. Analytical methods and rules of thumbs for modeling DG-Distribution interaction.Proceedings of the IEEE Power Engineering Society SummerMeeting, 3, 1643–1644 (2000).

[9] C. Wang and M. Hashem. Analytical approaches for optimal placement of distributes generation sources in power systems.IEEE Transactions on Power Systems, ISSN 0885–8950, 19(4), 2068–2076 (2004).

[10] D. Gautam and N. Mirhulananthan. Optimal DG placement in deregulated electricity market . Electric Power Systems Research, ISSN 0378–7796, 77(12), 1627– 1636 (2007).

[11] W. El-Khattam and M.M.A. Salama. Distribution generation technologies, definitions and benefits. Electric Power Systems Research, ISSN 0378–7796, 71(2), 119-128 (2004).

[12] E. E. Silva Lora e J. Haddad. Ger˜a¸cao distribu´ıda: aspetos tecnol´ogicos, ambientais e institucionais, ISBN 8571931453. Editoral Interci˜encias, 2006.

[13] Zimmerman R. and C. Murillo-Sanchez. MATPOWER 3.2: A MATLAB Power System Simulation Package. http://www.pserc.cornell.edu/matpower/, September 2007.

[14] H. Lee Willis and Walter G. Scott. Distributed Power Generation: Planning and Evaluation, ISBN 0824703367, Marcel Dekker, 2000.