Short run hydrothermal coordination with network constraints using an interior point method

Main Article Content

Jesús María López Lezama
Luis Alfonso Gallego Pareja
Diego Mejía Giraldo

Keywords

hydrothermal coordination, generation scheduling, linear pro- gramming, interior point methods

Abstract

This paper presents a lineal optimization model to solve the hydrothermal coordination problem. The main contribution of this work is the inclusion of the network constraints to the hydrothermal coordination problem and its solution using an interior point method. The proposed model allows working with a system that can be completely hydraulic, thermal or mixed. Results are presented on the IEEE 14 bus test system.

PACS: 84.60.Rb, 88.60.-m

MSC: 90C05, 90C51, 49M15

Downloads

Download data is not yet available.
Abstract 657 | PDF (Español) Downloads 837

References

[1] W. D. Stevenson, William Stevenson and John J. Grainger. Análisis de Sistemas de Potencia, ISBN 970–10–0908–8. McGraw–Hill, 1996.

[2] D. Mejía y A. Escobar. Coordinación Hidrotérmica de Sistemas Eléctricos Usando Predicción de Caudales Afluentes. Tesis para optar al título de Magíster en Ingeniería Eléctrica. Universidad Tecnológica de Pereira, diciembre de 2005.

[3] S. Soares and A. A. F. M. Carneiro. Optimal Operation of Reservoirs for Electric Generation. IEEE Transactions on Power Delivery, ISSN 0885–8977, 6(3), 1101-1107 (July 1991).

[4] Marcelo Augusto Cicogna and S. Soares. Modelo de Planejamento da Opera¸c˜ao Energética de Sistemas Hidrotérmicos a Usinas Individualizadas Orientado por Objetos. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e Computac˜ao. Fevereiro 1999.

[5] Daniel J. Camac G. Programación Dinámica Dual Determinística en el Despacho Hidrotérmico. Pontificia Universidad Católica de Chile, 1994. Referenciado en 47

[6] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, ISSN 0025–5610, 52(1–3), 359–375 (August 1991).

[7] T. Gama de Siqueira. Compara¸c˜ao entre Programa¸c˜ao Dinˆamica Estocástica Primal e Dual e no Planejamento da Oper¸c˜ao Energética. Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e Computa¸c˜ao, Junho de 2003.

[8] C. A. Correa, R. A Bola˜nos y A. G. Ruiz. Métodos no-lineales de puntos interiores aplicados al problema de despacho hidrotérmico. Scientia et Téchnica, ISSN 0122– 1701, XIII(34), 91–96 (mayo de 2007).

[9] N. K. Karmarkar. A New Polynomial–time Algorithm for Linear Programming. Combinatorica, ISSN 0209–9683, 4(4), 373–395 (1984).

[10] M. Kojima, S. Minuzo and A. Yoshie. A Polynomial–time Algorithm for a Class of Linear Complementarily Problems. Mathematical Programming, ISSN 0025– 5610, 44, 1989.

[11] Nimrod Megiddo. Progress in Mathematical Programming: Interior Point and Related Methods, ISBN 0387968474. Springer Verlag, New York, 1989.

[12] S. Mehrota. On the Implementation of a Primal–Dual Interior Point Method. SIAM Journal on Optimization, 2(4), 575–601 (1992).